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A comparison of the measure of the delocalization of a particle based on the two-particle distribution function
and that based on the single-particle density matrix is made using a simple set of wave functions which span
states ranging from single determinant ground and doubly excited states through states mimicking correlated
states and which include the singly excited state for electrons and for bosons replacing electrons in H2. The
comparison further includes an analysis of the application of the measures to a classical ideal gas and a
compressible fluid. It is found that the values of the integrated atom-atom measures agree for a range of
wave functions involving combinations of the two single determinant (and equivalent Bose) wave functions
but disagree for a different range of these wave functions and for the singly excited wave functions. Aside
from the single determinant (and equivalent Bose) wave functions, the two sets of point-point measures that
underlie the integrated measures all differ. For the sets of wave functions considered, the values of the measures
are identical for electrons and bosons. When applied to a closed classical ideal gas and to a closed compressible
fluid, the delocalization measure based on the two-particle distribution has a residual long range term, whereas
the sharing index in the classical limit gives a completely localized particle. In general, the two measures
describe different aspects of the behavior of the particles. The measures based on the two-particle distribution
function give only two-particle properties and the single-particle density, and the sharing quantities give only
single-particle properties. The latter includes, however, the quantitative measures of the delocalization of a
single particle, the point-point sharing index and the sharing amplitude.

I. Introduction

There is a common conception that in a many-electron system
the two-particle distribution function can be used to determine
the extent of delocalization of a single electron.1-11 The
argument is essentially the following.12 Because the wave
function for a collection of fermions is antisymmetric with
respect to the pairwise interchange of electron coordinates
(spatial plus spin), the probability that two electrons will be
found at the same spatial point with the same value of the spin
variable is zero. Choose one of the electrons in the two-particle
distribution function as the reference electron e*. In general,
the probability that a second electron with the same spin as the
first will be in the immediate vicinity of the first e* is diminished
from the product of the single-particle (same spin) probabilities
at the two points. This diminution of probability is taken to be
a measure of the delocalization of the first electron at the
position of the second electron, and hence a measure of the
“Fermi hole”.

This “Fermi hole” has been interpreted by Bader7 as providing
“a description of how the density of an electron of given spin,
called the reference electron, is spread out from any given point
into the space of another same spin electron, thereby excluding
the presence of an identical amount of same-spin electron.”13

In turn Bader3 has used this interpretation of the behavior of
the two-particle distribution function as the basis for the
definitions of a localization indexλ(A) and a delocalization
indexδ(A,B) where A and B refer to two volumes. The former
is called a measure of the total Fermi correlation within a volume

VA and the latter is called a measure of the extent to which the
Fermi density of the reference electron e* in volumeVA is spread
into volume VB. Fradera6 is more specific regarding the
meanings of the indices:λ(A) is the number of electrons
localized inVA andδ(A,B) is the number of electrons delocal-
ized between the two volumesVA andVB.

The beginnings of this interpretation can be traced to the 1934
paper by Wigner and Seitz14 in which the terms “Fermi hole”
and “correlation hole” were introduced. In that paper, the Fermi
hole was described as “... the hole in an otherwise uniform
electron fluid around every electron because the probability of
two electrons having parallel spin being very near is very small.”
The correlation hole was characterized as “arising from the
mutual repulsion terms, but they lie beyond the scope of Fock’s
equations.” For single determinant wave functions, the Fermi
hole is the result of the antisymmetry of a wave function with
respect to electron interchange while the correlation hole
vanishes for antiparallel spins. The latter is therefore determined
by correlations beyond those embodied in Hartree-Fock wave
functions and therefore beyond those resulting from the Pauli
principle. The shape of the Fermi hole in a uniform electron
fluid was given in an earlier paper of Wigner and Seitz.15 It is
to be noted, however, that in connection with the terms “Fermi
hole” and “correlation hole” Wigner and Seitz restricted their
remarks to the behavior of the two-particle distribution function
in “an otherwise uniform electron fluid”, with no reference to
a delocalization of an electron. Slater, in his review16 in 1934
and in a later paper17 in 1951, Maslen18 in his 1958 paper on
the shapes of Fermi holes in atoms, and McWeeny in his
review19 in 1960, also restricted their remarks to the behavior† E-mail: fulton@chem.fsu.edu.
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of the two-particle distribution function and/or to the exchange
hole associated with the distribution function, again with no
reference to the delocalization of an electron. Ruedenberg20 in
1962 seems to have been the first to have made a subtle change
in the interpretation of the Fermi hole from what McWeeny
called a “correlation factor”, related to the two-particle distribu-
tion function in a classical manner, to the sharing (or delocal-
ization) of a single electron between points, calling the negative
of the correlation factor the “sharing fraction”.

The analysis considered above initially raises two concerns.
The first is the role of the Pauli principle in determining the
extent of delocalization of the reference electron, the second is
the role of the two-particle distribution function in determining
single-particle properties. Consider the following two ques-
tions: “What is the role of the Fermi hole in determining the
delocalization of an electron?”, and “What single particle
properties can be deduced solely from the knowledge of the
two-particle distribution function?”

At the outset let the two-particle distribution function
(normalized to 2) for the two electrons in H2 be given by
F(2)(r1σ1,r2σ2) and the corresponding single-particle density be
given byF(1)(rσ) where (rσ) stands for the space coordinatesr
and a discrete indexσ which, in the case of an electron, is a
spin index.

Consider the hydrogen molecule in its ground electronic state
and constrained to be at the center of an evacuated container,
which is large compared to the size of H2. Electrons with the
same spin as one of the pair of electrons in the molecule are
constrained to be in the walls of the container because the
specification of a singlet state demands that within the molecule
the same spin distribution function vanish,F(2)(r1σ,r2σ) ) 0.
Let the reference electron with coordinates given by (r*σ*) be
denoted by e*. According to the prescription given above, the
Fermi hole due to e* is described by

the diminution ofF(2)(rσ*,r*σ*) from the product of the one-
particle density being complete. As a result, the Fermi hole for
e* extends over the region of the interior of the container where
F(1)(rσ*) is nonvanishing. Now the reason for the vanishing of
F(2)(rσ*,r*σ*) is not the Pauli principle; rather it follows from
the fact that there are but two electrons in the singlet state and
from the location of the molecule relative to the container walls.
This is but one, perhaps extreme, example that there are reasons
other than the Pauli principle that influence the behavior of the
two-particle distribution function.

Second, suppose that we are given only the two-particle
distribution function for a system ofN particles

The normalization of this distribution function, when integrated
and summed over all coordinates, is toN(N - 1). The integral
over the coordinates (r2σ2) gives

whereFN
(1)(r1σ1) is the single-particle density atr1 with spinσ1

in the N electron system. In the absence of any further
information, this is the only single-particle property inherent in
the two-particle distribution function. If we are now told that
the particles are fermions, we know, as a result of the Pauli
principle, that the two-particle distribution function vanishes

when (r1σ1) equals (r2σ2). The converse, that the vanishing of
the two-particle distribution function when (r1σ1) equals (r2σ2)
implies the Pauli principle, need not hold. The connection to
the single-particle density still holds, but there is no other
information about the behavior of a single particle inherent in
the two-particle distribution function. In particular, the two-
particle distribution function in general does not contain
information about the delocalization of an electron, nor does it
necessarily reflect the spreading of the electron density of a
single reference electron at a point into neighboring regions of
space as has been suggested by others.1-11 To obtain further
information about the behavior of a single electron requires
knowledge of some property governing the wave function, e.g.,
that the wave function be expressible as a single determinant.

Now the average value of any single-particle property can
be found from the single-particle density matrix, with the
implication that all single-particle properties can be found from
the single-particle density matrix. In particular, the delocalization
(or spread) of a single particle should be obtainable from the
single-particle density matrixsno knowledge of the two-particle
distribution should be necessary for the determination of the
extent of delocalization of an electron.

The implementation of this observation leads to a different
measure of the delocalization of an electron in a many-electron
system, a measure given solely by single-particle quantities.
These are the sharing amplitude〈ú;ú′〉, which is intimately
connected to the single-particle density matrix, and the sharing
index I(ú;ú′) ≡ |〈ú;ú′〉|2.21 ú and ú′ stand for the spatial plus
spin coordinates (rσ) and (r ′σ′). By integrating the arguments
ú andú′ of I(ú;ú′) over the volumesVA andVB, respectively,
we obtain indices which in some cases have numerical values
similar to λ(A) and δ(A,B). We denote the indices so found
from the sharing indices asIAA andBAB ≡ 2IAB. When the many-
particle wave function is a single determinant wave function,
the numerical values ofλ(A) andδ(A,B) are identical to those
of IAA and BAB. Wang and Werstiuk attempted to deriveIAA

andBAB from the expressions forλ(A) andδ(A,B) when electron
correlation is included.8,22 However, comparison ofλ(A) and
δ(A,B) with IAA and BAB showed systematic differences, the
differences tending to increase as the covalency increases.
Although the differences for the states of the molecules
considered by Wang and Werstiuk do tend to be small, the
differences are nonzero. These differences persist in the
compilations given in a recent review of electron delocalization
in aromatic molecules.11 Wang and Werstiuk indicate that “The
differences between our results and the F-A-B results3 may
derive from a difference in the qualities of the densities used in
the two studies.” This raises the question as to why such
differences exist. If the differences in the values of the indices
are not due to the difference in the qualities of the densities,
the differences must be intrinsic to the indices themselves. It is
our contention that this latter is the casesthe connection between
the two-particle distribution function and the delocalization of
a single electron holds neither for general wave functions nor
for general density matrixes. The agreement of the values of
the two-particle indicesλ(A) andδ(A,B) with the single-particle
sharing indicesIAA and BAB holds fortuitously for single
determinant wave functions. In this paper we show that, in
general, the two sets of indices are intrinsically different. They
in fact measure different aspects of the behavior of electrons in
a many-electron system.

One premise in the following is that any measure of the
delocalization of an electron (or, in general, any particle

F(2)(rσ*,r*σ*) - F(1)(rσ*) F(1)(r*σ*) ) -F(1)(rσ*) F(1)(r*σ*)

FN
(2)(r1σ1,r2σ2)

(N - 1)FN
(1)(r1σ1)
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including bosons) should be valid for any wave function and
by inference for any state of the electrons, be it the ground
electronic state, some excited electronic state, some state which
is not an energy eigenstate, a general mixed (impure) state, or
in the classical limit.

In the next section we give brief reviews of the two-particle
distribution function and of the sharing quantities as used in
attempts to determine the delocalization of an electron. This is
followed by a section in which the delocalization measures
obtained from the two-particle distribution function are com-
pared to the corresponding sharing indices for some simple
fermionic and bosonic wave functions describing the ground
and excited states of (pseudo) H2. The penultimate section
applies these measures to two classical systems, an ideal gas
mixture and a single component compressible liquid. In both
cases we find that the measures based on the two-particle
distribution function indicate that there is long ranged delocal-
ization of the classical particles for which there is no Fermi
hole. In contrast, the sharing quantities give complete localiza-
tion of the particles in the classical limit. The final section
summarizes our results.

II. General Considerations

Consider a system ofN particles. Let the position and spin
(or other degree of freedom which for convenience we call spin)
variables of particlei be denoted byr i andσi. The two-particle
distribution function [normalized toN(N - 1) when integrated
over the spatial variables and summed over the spin variables]
is here denoted byFN

(2)(r1σ1,r2σ2).23 The particle density at the
point (r1σ1), denoted byFN

(1)(r1σ1) and normalized toN, is
related to the two-particle distribution function by

The average number density irrespective of spin is

and average numberNN(σ1) of electrons having spinσ1 is

A subsequent sum overσ1 givesN(N - 1). It should be noted
that these sum rules have nothing to do with the nature of the
particles; they hold whether the particles be fermions, bosons,
or classical particles. As a consequence, the sum rules have
nothing to do with the existence or nonexistence of a Fermi
hole.

It is well-known that, as a result of the antisymmetry of a
wave function describing fermions, the two-particle distribution
function vanishes when the particles are electrons and the two
sets of coordinates are equal, (r1σ1) ) (r2σ2):

The probability of finding two electrons with the same spin at
the same spatial point vanishes.

In an attempt to quantify the extent of delocalization of the
first electron, Bader proceeds as follows.24 The two-particle
distribution function is used to define the function
FN

(2)(r1σ1,r2σ2) by

FN
(2)(r1σ1,r2σ2) is a measure of the deviation of the two-particle

distribution function from the productFN
(1)(r1σ1) FN

(1)(r2σ2) of
the electron densities at the two points.25 The sum rules obeyed
by FN

(2)(r1σ1,r2σ2) are

again being independent of the nature of the particles. We also
define the quantity

which has no dependence on the spin indices. It is this spatial
FN

(2) that is used by Bader to characterize the localization and
delocalization of an electron.

The integrated quantities, the localization indexλ(A) and the
delocalization indexδ(A,B), are defined by integrating the
point-point quantities over the volumesVA andVB ascribed to
atoms A and B

In contrast toFN
(2)(r1,r2), the sharing amplitude〈ú;ú′〉 is

found solely from single-particle properties and represents the
generalization of a simple construct for pure, single-particle
states.21 Let the single-particle wave function be

As is well-known, the wave function multiplied by a constant
phase actor does not change the state of the particle. An invariant
construct which measures the difference in phase of the wave
function at the two pointsú andú′ is given by

The absolute value squared of this quantity is the measure of
the sharing (delocalization) of the wave between the two points.
The integral ofú′ over all space gives the particle density at
the other point:

The sharing amplitude〈ú;ú′〉

[dropping the superscript onFN(ú;ú′)] is the generalization of
æ(ú)æ*(ú′) to impure states, and the sharing index

(N - 1)FN
(1)(r1σ1) ) ∑

σ2

∫dr2 FN
(2)(r1σ1,r2σ2) (1)

FN
(1)(r1) ) ∑

σ1

FN
(1)(r1σ1)

(N - 1)NN(σ1) ) ∑
σ2

∫dr1 ∫dr2 FN
(2)(r1σ1,r2σ2) (2)

FN
(2)(r1σ1,r1σ1) ) 0 (3)

FN
(2)(r1σ1,r2σ2) ≡ F(2)

N(r1σ1,r2σ2) - FN
(1)(r1σ1) FN

(1)(r2σ2) (4)

∫dr2 ∑
σ2

FN
(2)(r1σ1,r2σ2) ) -FN

(1)(r1σ1)

∫dr1∫dr2∑
σ2

FN
(2)(r1σ1,r2σ2) ) -NN(σ1) (5)

FN
(2)(r1,r2) ≡ ∑

σ1,σ2

FN
(2)(r1σ1,r2σ2) (6)

λ(A) ≡ |∫Adr1 ∫Adr2 FN
(2)(r1,r2)|

δ(A,B) ≡ 2|∫Adr1 ∫Bdr2 FN
(2)(r1,r2)| (7)

æ(ú)

æ(ú) æ*(ú′)

∫dú′ |æ(ú) æ*(ú′)|2 ) |æ(ú)|2

〈ú;ú′〉 ) FN
1/2(ú;ú′) (8)

I(ú;ú′) ≡ |〈ú;ú′〉|2 (9)
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is the generalization of|æ(ú) æ*(ú′)|2. As a result of its
construction, the sharing index satisfies the sum rule

The amplitude〈ú;ú′〉 can be written in terms of the eigen-
functions and eigenvalues,æm(ú), and eigenvalues,νm, of the
density matrix (the natural spin-orbitals) as21

The sharing index, which depends solely upon the spatial
coordinates, is formed from the sum ofI(ú;ú′) over the spin
indices:

The integrated quantities,IAA andBAB, are

Below there are two systems to which we apply the indices:
the first is a particular set of electronic (and bosonic, replacing
the electrons by bosons) states of H2; the second is a classical
fluid. It may be objected that because there are only two
electrons, H2 is too special a case to which the definition should
be applied. However, H2 has the prototypical covalent bond and
any measure of delocalization should be applicable to the
molecule. We could equally well consider Li2 in which regions
containing the core electrons are ignored, the valence regions
mimicking the electronic structure of H2. It may also be objected
that a classical fluid does not behave as a collection of fermions.
However, at high temperatures and low particle densities a Fermi
(and a Bose) gas behaves as a perfect gas.

III. Application to H 2

Here we consider two systems: the first is a Fermi system,
where the electrons in H2 are described by a simple set of singlet
wave functions; the second is a Bose system, where the electrons
in H2 are replaced by spin 0 particles also described by a simple
set of wave functions. Letæs(r) andæa(r) be two single-particle
real orbitals, the former being a bonding (σg) orbital and the
latter an antibonding (σu) orbital. For the Fermi system26 the
wave functions are

the spin functions being denoted byR(σ) and â(σ), and the
singly excited wave function

Values of the mixing angleθ giving unique wave functions up
to an overall phase factor may be restricted to lie in the interval
-π/2 < θ e π/2. For the Bose system the wave functions are

and

(These latter are just the spatial parts of the Fermi wave
functions.)

Although simple, these sets of wave functions have the
flexibility of being able to mimic the behaviors of a variety of
states of fermionic and bosonic H2, ranging from single
determinant ground and doubly excited state wave functions to
wave functions which include the effects of correlation of the
electrons as well as including a wave function which describes
singly excited states.

For both the Fermi and Bose wave functions having the
parametric dependence onθ the spinless point-point quantities
are

The spinless point-point quantities for the singly excited wave
functions are, for both the Fermi and Bose functions,

That both the Fermi and Bose wave functions lead to precisely
the same expressions for the spatial two-particle distribution
function and to the point-point Bader index is a strong
indication that the Fermi hole in general has nothing to do with
the delocalization of a particle.

There are some characteristic features of these expressions
which should be noted. Consider the expressions given in eqs
15. First, as is well-known, when the wave function is given
by a single determinant andr1 is identified withr andr2 with
r ′, the point-point Bader indexFN

(2)(r1,r2) and the point-point
sharing indexI(r ;r ′) are identical. This occurs forθ ) 0 and
for θ ) π/2. Second, when cosθ sin θ is less than 0 the two-
particle distribution functionFN

(2)(r1,r2) and the sharing index
I(r ;r ′), again with the identifications ofr1 ) r andr2 ) r ′, are
equal. Third, when cosθ sin θ is greater than 0 the difference
between the Bader indexFN

(2)(r1,r2) and the sharing index
I(r ;r ′) resides solely in the term

the difference between the indices being a maximum whenθ
) π/4. When the volume-volume indices are found by
integrating over the atomic basins, the difference due to this
term vanishes. This vanishing may in part account for the rough

∫dú′ I(ú;ú′) ) FN(ú;ú)

〈ú;ú′〉 ) ∑
m

æm(ú)νm
1/2æm

* (ú′)

I(r ;r ′) ≡ ∑
σ,σ′

I(rσ;r ′σ′)

IAA ≡ ∫A
dr ∫A

dr ′ I(r ;r ′)

BAB ≡ 2IAB ≡ 2∫A
dr ∫B

dr ′ I(r ;r ′) (10)

ΨFD,θ(ú1,ú2) ≡ [æs(r1) æs(r2) cosθ - æa(r1) æa(r2) sin θ] ×
[R(σ1) â(σ2) - â(σ1) R(σ2)]/x2 (11)

ΨFD(ú1,ú2) ≡ 1
2
[æs(r1) æa(r2) +

æa(r1) æs(r2)][R(σ1) â(σ2) - â(σ1) R(σ2)] (12)

ΨBE,θ(r1,r2) ≡ [æs(r1) æs(r2) cosθ - æa(r1) æa(r2) sin θ] (13)

ΨBE(r1,r2) ≡ 1

x2
[æs(r1) æa(r2) + æa(r1) æs(r2)] (14)

FN
(2)(r1,r2) ) 2{æs(r1) æs(r2) cosθ - æa(r1) æa(r2) sin θ}2

FN
(2)(r1,r2) )

-2{æs(r1) æs(r2) cosθ + æa(r1) æa(r2) sin θ}2 +

4[æs(r1)
2 - æa(r1)

2][æs(r2)
2 - æa(r2)

2] cos2 θ sin2 θ

I(r ;r ′) ) 2{æs(r ) æs(r ′)|cosθ| + æa(r ) æa(r ′)|sin θ|}2 (15)

FN
(2)(r1,r2) ) {æs(r1) æa(r2) + æa(r1) æs(r2)}

2

FN
(2)(r1,r2) ) -{æs(r1) æs(r2) - æa(r1) æa(r2)}

2

I(r ;r ′) ) {æs(r ) æs(r ′) + æa(r ) æa(r ′)}2 (16)

4[æs(r1)
2 - æa(r1)

2][æs(r2)
2 - æa(r2)

2] cos2 θ sin2 θ
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agreement between the basin-basin sharing indices and the
values of the delocalization indices which was found by Wang
and Werstiuk.8 Lastly, we note that the expressions given in
eqs 16 for the singly excited states all differ. In particular note
the difference in the relative signs of the products of orbitals
æsæs andæaæa in the expressions forFN

(2)(r1,r2) and I(r ;r ′).
The sharing amplitudes are given by

for the Fermi system and

for the Bose system, the amplitudes for the Bose system being
essentially the spatial part of the amplitudes for the Fermi
system. The quantities obtainable from the two-particle distribu-
tion function have no counterparts to these single-particle
amplitudes.

The spin independent course grained quantities, i.e., the
various volume-volume indices including the two-particle
distribution function, are found by integrating the point-point
quantities over the volumes constituting the atoms according
to Bader’s criterion.27 Label the atoms by A and B. The volumes
associated with the atoms are simple: the atomic volumes are
separated by a plane which is perpendicular to and bisects the
line connecting the two nuclei. For the wave functions depending
on θ the indices are, for both the Fermi and the Bose systems
(the integrated values of the point-point distribution function
are denoted byPAA andPAB)28

For the singly excited wave functions we obtain, again for both
the Fermi and Bose systems,

To illustrate quantitatively the differences between the two-
particle distribution function, the Bader indices, and the sharing
indices, we choose particularly simple orbitals: letφA(r ) and
φB(r ) be hydrogen-like 1s orbitals of the form

centered on the protons A and B, respectively. The exponentR
is chosen to be 1.18, a compromise21 among a molecular orbital
type wave function, the Heitler-London-Wang wave function
and the Weinbaum wave function. The distance between the
nuclei is chosen to beR ) 1.403 u. The forms of the molecular
orbitals are

The choices of the exponent and the internuclear distance give

and

The Weinbaum wave function29 is characterized byθ ) 0.111,
and the valence bond wave function is characterized byθ )
0.187.

We first compare the integrated quantities, the Bader indices
and the corresponding basin-basin sharing indices, and then
consider the basin-basin two-particle distribution functions. In
Figures 1-3 the solid lines represent the self-basin indices
λ(A), IAA, and the self-two-particle distribution index,PAA, and
the dashed lines represent the inter-basin indicesδ(A,B), BAB,
and the inter-basin distribution index,PAB. As noted above, the
Bader indices and the sharing indices coincide for values ofθ
ranging from 0 toπ/2: λ(A) ) IAA andδ(A,B) ) BAB. However,
for values ofθ between-π/2 and 0, the indices behave quite
differently: the localization indexλ(A) of Bader drops below
0.5 by as much as the self-sharing indexIAA rises above 0.5
and the delocalization indexδ(A,B) rises above 1.0 by as much
as the bond indexBAB drops below 1.0. That the integrated

〈ú;ú′〉FD,θ ) δσ,σ′{æs(r )|cos(θ)|æs(r ′) + æa(r )|sin(θ)|æa(r ′)}

〈ú;ú′〉FD ) 1

x2
δσ,σ′{æs(r ) æs(r ′) + æa(r ) æa(r ′)} (17)

〈r ;r ′〉BE,θ ) x2{æs(r )|cos(θ)|æs(r ′) + æa(r )|sin(θ)|æa(r ′)}

〈r ;r ′〉BE ) {æs(r ) æs(r ′) + æa(r ) æa(r ′)} (18)

λ(A) ) 1
2
[1 + 8|(æs,æa)A|2 cosθ sin θ]

δ(A,B) ) 1 - 8|(æs,æa)A|2 cosθ sin θ

IAA ) 1
2
[1 + 8|(æs,æa)A|2|cosθ sin θ|]

BAB ) 1 - 8|(æs,æa)A|2|cosθ sin θ|

PAA ) 1
2

- 4|(æs,æa)A|2 cosθ sin θ

PAB ) 1
2

+ 4|(æs,æa)A|2 cosθ sin θ (19)

λ(A) ) 1
2

- 2|(æs,æa)A|2

δ(A,B) ) 1 + 4|(æs,æa)A|2

IAA ) 1
2

+ 2|(æs,æa)A|2

BAB ) 1 - 4|(æs,æa)A|2

PAA ) 1
2

+ 2|(æs,æa)A|2

PAB ) 1
2

- 2|(æs,æa)A|2 (20)

Figure 1. Integrated Bader two-particle delocalization indices as
functions of the mixing angleθ in radians.

φA,B(r ) ) (R3/π)1/2e-R|r-rA,B|

æs(r ) ) 1

x2(1 + S)
[φA(r ) + φB(r )]

æa(r ) ) 1

x2(1 - S)
[φA(r ) - φB(r )]

S) 0.682

(æs,æa)A ) 0.4448
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sharing indices do not discriminate between positive and
negative values of the mixing angleθ should not be a surprise
because the single-particle density matrix

does not disciminate between the positive and negative values.
Therefore no single-particle property can discriminate between
these values.

The two-particle distribution indicesPAA andPAB, given in
Figure 3, indicate that the correlation introduced into the wave
function for positive values ofθ tends to keep the two electrons
apart, the inter-basin indexPAB increasing above 0.5 and the
self-indexPAA decreasing below 0.5. Whenθ is negative, the
correlation is reversed: the two electrons are more likely to be
in the same basin than in different basins.

Can the contrasting behaviors of the Bader indices and the
sharing indices be understood from the wave function directly?
Rather than considering the Bader indices, it is simpler at the
outset to understand the behavior of the two-particle distribution
function. Consider the spatial part only of the Fermi function

When θ ) 0 or θ ) π/2, the functions are simple, being the
products of either the bonding or the antibonding molecular
orbitals

As a result, there is no correlation between the positions of the
two electrons. Particle 2 is independent of particle 1. If we fix
particle 2 at some position, e.g.,r2, where the single-particle
orbital does not vanish, the behavior of the other particle is
described by the orbitalæs(r1) when the total wave function is
Ψ0(r1,r2) and by the orbitalæa(r1) when the total wave function
is Ψπ/2(r1,r2), irrespective of the value ofr2. Because each of
the orbitals extends over the entire molecule, particle 1 is
delocalized over the entire molecule.

For wave functions which are not single determinants it is
simplest to consider the case in which the atomic orbitals
φA(r ) andφB(r ) have no overlap,S) 0. The various integrated
quantities behave similarly to those given in Figures 1-3, the
difference being that the extreme values of the indices forλ(A)
are 0 and 1; forδ(A,B), 0 and 2; forIAA, 0.5 and 1; and for
IAB, 0 and 1. The locations of these extremes occur at the same
values ofθ as when the overlap is nonzero. Consider first the
case ofθ ) π/4. The spatial part of the Fermi wave function is
simply the valence bond wave function when there is zero
overlap

We begin with a discussion of the two-particle distribution
function. When particle 1 is in the vicinity of nucleus A, particle
2 must be in the vicinity of nucleus B for the wave function to
be nonvanishing and vice versa. This is the behavior indicated
by the values of the integrated two-particle distribution function,
PAA ) 0 andPAB ) 1, in the case of zero overlap, and reflected
by the values given in the Figure 3 forθ ) π/4 when the overlap
is nonvanishing. The values of the sharing indices can also be
understood on the basis of the wave function. To get the
behavior of a single particle, e.g., particle 1, we first choose
particle 2 to be in the vicinity of nucleus B. Then that part of
the wave function referring to particle 1 which is nonvanishing
is φA(r1), and particle 1 is localized in the vicinity of nucleus
A. If particle 2 is in the vicinity of nucleus A, the situation is
reversed and that part of the wave function referring to particle
1 is φB(r1), localizing particle 1 in the vicinity of basin B. In
either case, particle 1 is localized in the vicinity of a single
basin resulting in the value of 1 for the self-sharing indexIAA

whenS) 0 andθ ) π/4. Correspondingly the interbasin index
is a minimum,BAB ) 0. These extreme values are reflected in
Figure 2 when the overlap is nonvanishing. What do the Bader
indices give? These follow immediately from the definitions in
terms of the two-particle distribution function and the one-
particle density,λ(A) ) 1, andδ(A,B) ) 0. The values of the
integrated Bader indices agree with those given by the integrated
sharing indices.

The behavior of the Bader indices and the sharing indices
show completely disparate behaviors for negative values ofθ.
Consider the case ofθ ) -π/4 when there is zero overlap of
the atomic functions. The spatial part of the wave function is

Figure 2. Integrated sharing indices as functions of the mixing angle
θ in radians.

Figure 3. Integrated two-particle distribution functions as functions
of the mixing angleθ in radians.

F(ú;ú′) ) δσ,σ′{æs(r ) cos2(θ) æs(r ′) + æa(r ) sin2(θ) æa(r ′)}

Ψθ(r1,r2) ≡ [æs(r1) æs(r2) cosθ - æa(r1) æa(r2) sin θ]

Ψ0(r1,r2) ) æs(r1) æs(r2)

Ψπ/2(r1,r2) ) -æa(r1) æa(r2)

Ψπ/4(r1,r2) ≡ 1

x2
[φA(r1) φB(r2) + φB(r1) φA(r2)]

Ψ-π/4(r1,r2) ≡ 1

x2
[φA(r1) φA(r2) + φB(r1) φB(r2)]
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The behavior of the two-particle distribution function can be
simply read off; if particle 2 is in the vicinity of nucleus A,
then so is particle 1. The integrated two-particle distribution
functions reflect this: the values of the indices arePAA ) 1
andPAB ) 0. The behavior of the single-particle sharing indices
is also readily apparent. Fix particle 2 to be in the vicinity of
nucleus A. Then particle 1 is described by the orbitalφA(r1),
which is also localized in the vicinity of nucleus A. If, rather,
particle 2 is fixed in the vicinity of nucleus B, then particle 1
is described byφB(r1), which is localized in the vicinity of
nucleus B. In either case, particle 1 is localized in the region of
a single basin, giving rise to the values of the single-particle
sharing quantities,IAA ) IBB ) 1 andBAB ) 0. Aside from the
overall sign, the Bader indices require the subtraction of 1 from
the two-particle distribution functions, followed by multiplica-
tion by 2 for the interbasin index. This gives the values ofλ(A)
) |F(A,A)| ) 0 andδ(A,B) ) 2|F(A,B)| ) 2 when there is
zero overlap of the atomic orbitals. According to the interpreta-
tion of the Bader indices,3,5 |F(A,A)| ) 0 indicates that no
particles are localized in basin A and|F(A,B)| ) 1 indicates
that a single particle, referenced to atom A, is delocalized onto
atom B, and a single particle, referenced to atom B, is
delocalized onto atom A. This, however, is not what is given
by the two-particle distribution function or indicated by the wave
function, both of which quite clearly indicate that the two-
particles behave as a “bound” pair. At the two electron level,
the particles, as a pair, are shared between basins A and B. The
interpretation which has been given to the Bader indices does
not reflect this.

The values of the integrated indices for the singly excited
wave functions whenS ) 0.682 are given in Table 1. These
values are, in fact, the same as those obtained from the wave
function Ψ-π/4(r1,r2). It should be noted that the value of
δ(A,B) in the table does not agree with the result given by
Fradera and Sola` in ref 6.30 The integrated two-particle
distribution functions reflect the localized pairing of the two-
particles in either one or the other of the two basins. If one
particle is in basin A, for example, there is a high probability
that the other particle is also in basin A and there is a small
probability that the other particle is in basin B. The sharing
indices reflect a similar behavior. A single particle is localized
in either one basin or the other, with a small amount of inter-
basin sharing. Again, the integrated Bader indices do not reflect
this. Instead, the interpretation suggested for the Bader indices
is almost complete delocalization of the electrons between the
basins.

A naive determination of the bond order for this wave
function that contains one bonding and one antibonding orbital
is 0, a value much closer to the value of the interbasin sharing
indexBAB than to the value of the Bader indexδ(A,B), although
perhaps not pertinent to the establishment of the validity of the
indices. But the point-point single-particle sharing amplitude,
given in Figure 17 below, indicates, in addition, that this is an
antibonding type of sharing rather than a bonding type of
sharing, again more in line with what should be expected for

the singly excited state. The two-particle distribution function
has no counterpart to the sharing amplitude and does not
distinguish between bonding and antibonding types of delocal-
ization.

As in the former case, it is simplest to dissect the behavior
of the wave function in the special case of zero overlap. The
spatial part of the wave function is then

when written in terms of the atomic orbitals. What differs from
the wave functionΨ-π/4 is the relative sign between the two
terms; the present wave function has a node between the simple
pair wave functions,φA(r1) φA(r2) centered on nucleus A and
φB(r1) φB(r2) centered on nucleus B. Because the atomic orbitals
have zero overlap, the analysis of the behavior of the particles
is precisely the same as that given for the previous wave
function, with the values of the various integrated indices being
the same. Again, the Bader indices do not reflect the localization
of the pair of electrons.

Recall that the Bader indices involve the difference between
the product of the number of particles in the basins and the
integrated two-particle distribution function. This can obscure
the meaning of the Bader indices. In this case, it is because the
number of particles in each basin is 1 and the integrated inter-
basin distribution function is small that the difference is sizable,
leading to the large value ofδ(A,B). The origin is in the behavior
of the two-particle distribution function itself and I think that
the simplest interpretation is a direct interpretation of the two-
particle distribution function; namely, the particles are mainly
paired in either one or the other basin.

Next we compare some of the point-point Bader indices and
point-point sharing indices for both positiveθ and negativeθ.
Although for positiveθ the integrated Bader indices and sharing
indices have the same values, the point-point Bader indices
and the point-point sharing indices differ. Whenθ is negative,
it is clear from the integrated indices that the point-point indices
must differ. The spatial parts of the point-point indices (and
amplitudes) depend on six variables. We reduce the number of
quantities being varied in the figures by fixing the internuclear
axis to be along thex axis, by fixing the midpoint of the
molecule at the origin of the coordinate system, and by placing
one point (r ′, the fixed point) on the proton located at negative
x. The other point is allowed to roam about thexy plane. The
vertical axis is the value of the quantity being plotted. It should
be noted that the figures give but a small subset of the point-
point quantities and quantitative values of the integrated indices
cannot be inferred from the figures. Recall that for the chosen
set of wave functions, the values of the indices which depend
only on the spatial coordinates are identical for the Fermi
particles and Bose particles.

The Bader indices and the sharing indices have the same
values for single determinant wave functions when the identi-
ficationsr ) r1 andr ′ ) r2 are made. Figures 4 and 5 give the
point-point indices for the two single determinant wave
functions in the set of wave functions, Figure 4 forθ ) 0 and
Figure 5 forθ ) π/2. The first is representative of a Hartree-
Fock ground state, and the second represents a “Hartree-Fock”
doubly excited state when describing electrons. Both sets of
indices are symmetric with respect to inversion through the
origin, and indeed reflect the behavior of the squares of the
molecular orbitalsæs(r ) and æa(r ), respectively. A major
difference between the two figures is that the point-point

TABLE 1: Values of Various Indices for the Singly Excited
Wavefunction

index value

PAA 0.896
PAB 0.104
λ(A) 0.104
δ(A,B) 1.791
IAA 0.896
BAB 0.209

Ψ(r1,r2) ≡ 1

x2
[φA(r1) φA(r2) - φB(r1) φB(r2)]

Comparison of the Localization of an Electron J. Phys. Chem. A, Vol. 110, No. 44, 200612197



indices in Figure 5 dip to naught on the line havingx ) 0 in
contrast to the nonzero value in Figure 4. This is a reflection of
a possible nodal surface of the molecular orbitalæa(r ) cutting
the xy plane. But this node can only be inferred from the
quantities derived from the two-particle distribution function.
The sharing amplitude for the wave function havingθ ) π/2,
given in Figure 6, shows the node unambiguously, there being
a change in the sign of the amplitude as the node is crossed. In
the present case the amplitude clearly has the hallmarks of
antibonding rather than bonding. This is one illustration of an
aspect of the sharing quantities that is not conveyed by the two-
particle indices: in general, the sharing amplitudes have nodal
surfaces. It might be noted that the node is not at all picked up
by the integrated quantities, the values of the interbasin indices
being 1 for both the ground Hartree-Fock state and the excited
Hartree-Fock state. These results indicate that the point-point
indices have the advantage over the integrated quantities of
discriminating between the behaviors of the electrons in the
ground electronic state and in the doubly excited state. The
sharing amplitude, however, provides the greatest discrimination
between the behavior of the electrons in the two states.

As noted above, the Weinbaum wave function, a simple wave
function including effects due to correlation, is specified by the
valueθ ) 0.111. The point-point sharing index and the point-

point Bader index are given in Figures 7 and 8 for this wave
function.31 Superficially, the indices are similar. Unlike the
indices represented in Figure 4 in which the peaks at the two
protons are of equal height, in this case the peaks located at the
fixed point are higher than the peaks at the other proton. As
indicated in Figure 7, correlation has the effect of localizing an
electron to the vicinity of the fixed point on the proton. A similar
effect occurs for the Bader index in Figure 8; however here, as
shown by the plot of the two-particle distribution function in
Figure 9, the effect is due to two factors: (1) the increase in
the probability of finding the second particle about the second
proton if the first is in the vicinity of the first proton and (2)
the definition ofFN

(2)(r1,r2) as the difference between the two-
particle distribution function and the product of the single-
particle densities at the two points.

Closer inspection of Figures 7 and 8 indicates that the peak
at the fixed point (the proton located at negativex) is higher
for the sharing index than for the Bader index. The peak at the
second proton is also higher and sharper for the sharing index
than for the Bader index. This difference is indicated more
clearly by Figure 10 in which the difference between the indices,
[-FN

(2)(r1,r2)] - I(r ;r ′) with the identificationsr1 ) r andr2 )
r ′, is plotted. In contrast to the two sets of integrated quantities
that have the same values whenθ is positive, the point-point
indices differ.

Figure 4. Point-point sharing and Bader indices,θ ) 0°.

Figure 5. Point-point sharing and Bader indices,θ ) 90°.

Figure 6. Sharing amplitude,θ ) 90°.

Figure 7. Point-point sharing index,θ ) 6.36°.

Figure 8. Bader point-point delocalization index,θ ) 6.36°.

Figure 9. Two-particle distribution function,θ ) 6.36°.
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The point-point indices for the wave function that is
orthogonal to the Weinbaum function are given in Figure 11
for the sharing index and in Figure 12 for the Bader index. We
note that the sharing index is more localized in the region
surrounding the fixed point and the Bader index is more
localized about the other proton, both consistent with the
differing values of the integrated sharing indices and Bader
indices,IAA ) 0.587 andBAB ) 0.826 in contrast toλ(A) )
0.413 andδ(A,B) ) 1.174. In addition, the small value (perhaps
zero) of the indices on a line running roughly parallel to they
axis suggests that the sharing is of an antibonding type. When
the sharing amplitude is plotted (not shown), this is indeed the
case. This behavior fits nicely with the wave function being an
excited state.

As a further example of the difference between the point-
point quantities when the integrated indices are the same, we
give the sharing index and the Bader index in Figures 13 and
14 when the angleθ is 20°. The point-point sharing index is
always positive with essentially no sharing from the fixed point
to the vicinity of the other proton while the Bader index,
although concentrated mainly about the fixed point with a
maximum which is lower than that of the sharing index, is

negative in the region of the other proton. The two indices show
quite different behaviors for this mixing angle.

The last comparison of the point-point indices is for the
singly excited wave functions. The integrated indices, given
above in Table 1, show dramatic differences between the sharing
quantities and the Bader quantities. The sharing index, given
in Figure 15, and the Bader index, given in Figure 16, are also
quite different. The point-point sharing index indicates that
the electron is localized in the region of the fixed point with
rather minor sharing to the vicinity of the second proton whereas
the main contribution to the point-point Bader index is from
the region surrounding the second proton and a minor contribu-

Figure 10. Difference between the point-point Bader index and
sharing index,θ ) 6.36°.

Figure 11. Point-point sharing index,θ ) -83.64°.

Figure 12. Point-point Bader delocalization index,θ ) -83.64°.

Figure 13. Point-point sharing index,θ ) 20°.

Figure 14. Point-point Bader delocalization index,θ ) 20°.

Figure 15. Point-point sharing index, singly excited state.

Figure 16. Point-point Bader delocalization index, singly excited state.
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tion from the region of the fixed point. These differences in the
point-point indices are consistent with the differences in the
integrated indices, the integrated sharing index indicating
localization in one basin is larger than the delocalization to the
other basin, the Bader indices indicating just the opposite.

The sharing amplitude for the singly excited wave function
is given in Figure 17. As noted above in connection with the
integrated indices for this wave function, the sharing amplitude
indicates that the sharing is of an antibonding nature. The
amplitude is positive in the region around the fixed point with
a nodal surface separating that region and the negative region
surrounding the other proton. Unlike the amplitude for the
doubly excited state at the single determinant level given in
Figure 6, the amplitude for the present wave function is not
antisymmetric with respect to reflection through the plane
containing the midpoint of and perpendicular to the line
connecting the two protons. The magnitude of the amplitude is
larger at the fixed point than at the location of the other proton.
This is a manifestation of the correlation inherent in the singly
excited wavfunction.

The results presented in this section indicate that the Bader
indices and the sharing indices measure quite different aspects
of the behavior of particles in quantal systems. Even when the
integrated indices have the same values, the point-point indices
generally differ. The exceptions to this are when the wave
functions (for electrons) are given by single determinants. One
important quantity given by the sharing quantities and not by
quantities based on the two-particle distribution function is the
sharing amplitude, which allows for the discrimination between
bonding and antibonding behavior.

IV. Classical Fluids

In addition to the differences shown above, the indices also
differ in the classical limit. Consider a mixture of classical ideal
gases in thermal equilibrium at temperatureT. The gas is
confined to a volumeV. The components of the gas are labeled
by the indexσ. (σ may, but need not, be a spin index.) The
total number ofσ particles is denoted byNσ. The two-particle
distribution function is

FN
(2)(r1σ1,r2σ2) is given by

Let the volume associated with A beVA and that associated
with B be VB. (VA andVB need not sum to the total volume.)
The Bader indices are given by

whereNA,B are the total numbers of particles in the volumes
VA,B and N is the total number of particles in the system.
According to the proposed interpretation ofλ(A), only the
fractionNA/N of theNA particles in volumeVA are localized in
that volume. In turn, the value ofδ(A,B) indicates that there is
a long-range delocalization of particles between even well-
separated volumeVA andVB. But to what extent is the reference
particle in an ideal gas spread out by quantum effects? It is
expected to be of the order of the thermal de Broglie
wavelength32

wherem is the mass of the particle,k is Boltzmann’s constant,
and h is Planck’s constant. At high temperature (e.g., in the
classical limit) this wavelength is vanishing small, so that
quantally the reference particle is not spread out but is in fact
localized. The measures proposed by Bader,3 however, indicate
“Fermi correlation” within the volumeVA and delocalization
between the two volumesVA and VB, which is interpreted as
being due to a Fermi hole. But these cannot be due to a Fermi
hole in this classical gas because there is no Fermi hole in this
classical system! Furthermore, at high temperatures Fermi and
Bose gases have identical behaviors, both giving the same
localization and delocalization indices, yet a Bose gas has no
Fermi hole.

These considerations can also be simply extended to any
uniform classical fluid. For simplicity, consider a uniform one-
component (σ ) 1) fluid confined to the volumeV. The regions
associated with A and B are chosen far apart. In a closed system
of N particles contained in a volumeV, the asymptotic value of
the two-particle distribution function is33

whereκT is the coefficient of isothermal compressibility

As a consequence, the asymptotic limit ofFN
(2) is

and the indexδ(A,B) between the two widely separated volumes
containingNA andNB particles respectively is

a result that agrees with the calculation for an ideal gas and
that does not vanish unless the fluid is incompressible. Again,

Figure 17. Sharing amplitude, singly excited state.
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this asymptotic result is for a purely classical system for which
there is no Fermi hole.

The sharing amplitude and the associated sharing index stand
in sharp contrast to the Bader indices. These are readily
calculated for a single particle in an ideal gas. In the following
we ignore any contribution due to the spin of the particles. The
normalized distribution function which plays the role of an
occupation number is

q is the partition function

V is the volume of the gas, andp is the momentum. The
normalized natural orbitals are the eigenfunctions of momentum
operator

To get the sharing amplitude, we form the square root ofF(p),
multiply by ψp(r ) ψp

/(r ′) and by the square root of the number
of particlesN in the gas, and then integrate over the momentum.
This gives

Fj is the density of the gasN/V. The corresponding point-point
sharing index is

As the thermal de Broglie wavelengthΛ becomes small, the
sharing amplitude and the sharing index become more localized
to the region for which (r - r ′)2 < p2/2mkT. In the limit of
zero de Broglie wavelength we find34

and the particle is completely localized, quite unlike what is
indicated by the Bader criteria.

What we have found in this section is the delocalization
indices based on the two-particle distribution when applied to
a system of classical particles have a behavior that is completely
contrary to the behavior of the sharing indices. According to
the interpretations that have been given toλ(A) and δ(A,B),
the former indices indicate that classical particles are not
completely localized to a region, rather they are delocalized over
macroscopic distances. The sharing index, on the other hand,
shows complete localization in the classical limit.

V. Discussion and Summary

Several questions were raised in the Introduction. These
included: (1) Is the behavior of the two-particle distribution
function determined solely by the Pauli principle? (By “Pauli
principle” we mean the general relation between spin and
statistics.) (2) What is the role of the Fermi hole in determining

the delocalization of an electron (or more generally of a
particle)? (3) What single-particle properties can be determined
solely from the two-particle distribution function? (4) Are there
intrinsic differences between the Bader indicesλ(A) andδ(A,B)
and the sharing indicesIAA andBAB? (5) What, if any, is the
explanation for the rough agreement found between the values
of the indicesλ(A) andδ(A,B) andIAA andBAB found by Wang
and Werstiuk?8 (6) Do the Bader indicesλ(A) and δ(A,B) in
general give a measure of the delocalization of an electron? To
these we add the questions: what can and what cannot the
various indices determine?

The answers to these questions are predicated on the premise
that any measure of the delocalization of a particle should be
valid for any wave function and by inference for any state of
the electrons, be it the ground electronic state, some excited
electronic state, some state that is not an energy eigenstate, a
general mixed (impure) state, or in the classical limit.

The answer to the first question is clear. That there are
considerations beyond the Pauli principle that determine the two-
particle distribution function was early recognized by Wigner
and Seitz.14 Specifically, these authors mentioned the correlation
hole as “arising from the mutual repulsion terms, but they lie
beyond the scope of Fock’s equations.” Beyond this, however,
there are other considerations, such as mentioned in the
Introduction; e.g., the location of a molecule relative to other
molecules may be determined by the experimental setup.

The answer to the second question is answered, in part, by
the considerations in section IV in which the Bader indices are
considered for a mixture of ideal gases in a fixed volume
behaving as a closed system and in part by the results of section
III in which the Bader indices and the sharing indices are
considered for simple, yet flexible, sets of wave functions
describing fermionic and bosonic H2. That the spatial point-
point indices are precisely the same for a set of fermionic wave
functions and bosonic wave functions is a strong argument that
the Fermi hole in general does not determine the delocalization
of a particle. In addition, in section IV a long-range contribution
to the Bader index,δ(A,B), is found for ideal gas mixtures.
Dilute gases composed of particles obeying either Fermi-Dirac
or Bose-Einstein statistics behave ideally at high temperatures
and both have the same two-particle distribution function. In
this classical limit for which the thermal de Broglie wavelength
Λ vanishes, there is no Fermi hole. A similar result holds for
compressible fluids constrained as closed systems to a fixed
volume. Again there is a long-range contribution to the Bader
index, δ(A,B). We note that the sharing amplitude and the
sharing index indicate complete localization of a particle in the
limit of vanishingΛ.

The argument given in the Introduction gives the answer to
question 3. There it was shown that in the absence of any other
restriction, the only single-particle property that can be found
solely from the two-particle distribution function is the one-
particle density. Below we will note that there is a restriction
that does allow certain other properties to be determined from
the two-particle distribution function.

That there are intrinsic differences between the Bader indices
λ(A) and δ(A,B) and the sharing indicesIAA andBAB is clear
from the contrast between the values of the indices for the same
wave function when the mixing angleθ is negative. The
underlying point-point indices have also been found to differ
for almost all values of the mixing angle. The two exceptions
are forθ ) 0° andθ ) 90°, in which cases the wave function
is a single determinant. Also found is a possible reason for the
close agreement of the two sets of integrated indices found by
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q ) (2πmkT

h2 )3/2
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eir ·p/p
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Wang and Werstiuk.8 If the mixing of the approximate excited
Hartree-Fock states into the lowest energy Hartree-Fock state
to give a correlated ground-state wave function is of the form
given for H2 in the present paper for positive mixing angles,
the term in the integrated indices that accounts for the differences
may be small because of cancellations occurring in the integrals.

The analysis of the integrated indices in section III, proceed-
ing directly from the underlying wave functions, indicate that
the Bader indices do not give a measure of the delocalization
of an electron whereas the sharing quantities do give a measure
of the delocalization of an electron. For example, Table 1 gives
the values of the indices for the singly excited state of H2. The
Bader delocalization index is found to beδ(A,B) ) 1.791
whereas the inter-basin sharing index isBAB ) 0.209. The latter,
although nonzero, is in line with what is expected for a bond
order arising from a single bonding orbital and a single
antibonding orbital and with what is expected from the structure
of the wave function, whereas the former is well out of line.
(Parenthetically, we note that the sharing amplitude with the
fixed point located on one of the protons does have a node
between the fixed point and the other proton, this being
indicative of an antibonding rather than a bonding situation.)

For this singly excited state, the integrated two-particle
distribution functions are more amenable to direct interpretation
than are the Bader indices, having the values of 0.896 and 0.104
for the self-index and inter-basin index, respectively. The
interpretation is simply that if one particle is localized in the
region of a given proton, the other particle is more likely to be
in the region of that given proton.

In addition, the values of the indices, both the integrated
indices and the point-point indices, are the same for the Fermi
and for the Bose wave functions considered in this paper. This
is a strong indication that the Fermi hole need have nothing to
do with the localization of a single particle.

It is clear that the Bader indices and the sharing indices in
general describe different aspects of the behaviors of electrons.
What can be obtained from the two sets of indices? Are there
ever some common features that can be obtained from the
indices? What are the intrinsic differences between the sets of
indices?

We first consider the properties of wave functions that are
given by a single determinant. For such a wave function, the
point-point indices-FN

(2)(r1,r2) and I(r ;r ′) with the identifi-
cationsr1 ) r and r2 ) r ′ have the same values and in this
case the two sets of indices can, as indicated below, give
common properties. Because the point-point sharing index has
its source in the sharing amplitude〈ú;ú′〉, because the one-
particle density matrixFN(ú;ú′) can be found from the amplitude
by

and because all the many-particle density matrixes can be
expressed in terms of the single-particle density matrix when
the wave function is a single determinant,35 the sharing
amplitude contains implicitly all properties of the system. In
turn, the generalized (spin dependent) point-point Bader index
is given by

and if the single-particle density matrix can be unambiguously
extracted from this, then all properties of the many-body system
can be found from the point-point Bader index. In general,

however,FN(ú;ú′) is complex and it is not possible to carry out
such an extraction unambiguously. If it is known that the one-
particle density matrix is real and if the nodal surfaces can be
identified (so that the positive and negative regions ofFN(ú;ú′)
can be identified), all properties of the system can be found.
Under such circumstances the two-particle distribution function
is capable of giving the same information as the sharing
amplitude, and in a sense the indices contain equivalent
information.

When the wave function cannot be represented by a single
determinant, the point-point sharing indices and the point-
point Bader indices are nonequivalent. In such a case, what do
and what do not the indices determine? Because the single-
particle density matrix no longer determines the higher order
density matrices, the single-particle sharing amplitude no longer
determines the two-particle or any higher order distribution
function. Only single-particle properties can be determined in
general from the single-particle sharing amplitude. One of these
properties is the extent of delocalization of a single particle.
However, the single-particle quantities do not necessarily
discriminate between different wave functions. Examples of such
wave functions are given in this paper: the two wave functions
ΨFD,θ(ú1,ú2) and ΨFD,-θ(ú1,ú2) give rise to the same single-
particle sharing amplitude, and thus to the same point-point
sharing index. On the other hand, the two-particle distribution
function determines solely the behavior of a pair of particles
and, concomitantly, the single-particle density. In general, it does
not determine the delocalization of a single particle. However,
the two-particle distribution function, and therefore the point-
point Bader index, does discriminate between positive and
negative values of the mixing angle for the wave functions given
in this paper. (We do note that the single-particle amplitudes
can be generalized to two-particle sharing amplitudes that not
only distinguish between positive and negative values of the
mixing angle but also distinguish between fermionic and bosonic
behavior.) Lastly, the sharing quantities have a feature that is
not inherent in quantities derived from the two-particle distribu-
tion function, the sharing amplitude. This amplitude in general
has a rich nodal structure which, as illustrated in Figures 6 and
17, can be used to distinguish between different types of sharing,
e.g., between bonding and antibonding types of sharing.
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