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Comparison of the Localization of an Electron As Determined by the Two-Particle
Distribution Function and by the Single-Particle Sharing Index
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A comparison of the measure of the delocalization of a particle based on the two-particle distribution function
and that based on the single-particle density matrix is made using a simple set of wave functions which span
states ranging from single determinant ground and doubly excited states through states mimicking correlated
states and which include the singly excited state for electrons and for bosons replacing electrorighim H
comparison further includes an analysis of the application of the measures to a classical ideal gas and a
compressible fluid. It is found that the values of the integrated atatom measures agree for a range of

wave functions involving combinations of the two single determinant (and equivalent Bose) wave functions
but disagree for a different range of these wave functions and for the singly excited wave functions. Aside
from the single determinant (and equivalent Bose) wave functions, the two sets of point measures that
underlie the integrated measures all differ. For the sets of wave functions considered, the values of the measures
are identical for electrons and bosons. When applied to a closed classical ideal gas and to a closed compressible
fluid, the delocalization measure based on the two-particle distribution has a residual long range term, whereas
the sharing index in the classical limit gives a completely localized particle. In general, the two measures
describe different aspects of the behavior of the particles. The measures based on the two-particle distribution
function give only two-particle properties and the single-particle density, and the sharing quantities give only
single-particle properties. The latter includes, however, the quantitative measures of the delocalization of a
single particle, the poirtpoint sharing index and the sharing amplitude.

|. Introduction V, and the latter is called a measure of the extent to which the
Fermi density of the reference electron e* in voluvigis spread
into volume Vg. Fraderé is more specific regarding the
meanings of the indicesA(A) is the number of electrons

argument is essentially the followirg. Because the wave localized inV4 andd(A,B) is the number of electrons delocal-

: . : 4 . T ized between the two volumé& andVg.

function for a collection of fermions is antisymmetric with T o )
respect to the pairwise interchange of electron coordinates 1he beginnings of this interpretation can be traced to the 1934
(spatial plus spin), the probability that two electrons will be Paper by Wigner and Seitzin which the terms “Fermi hole”
found at the same spatial point with the same value of the spin @nd “correlation hole” were introduced. In that paper, the Fermi
variable is zero. Choose one of the electrons in the two-particle hole was described as “... the hole in an otherwise uniform
distribution function as the reference electron e*. In general, electron fluid around every electron because the probability of
the probability that a second electron with the same spin as thetwo electrons having parallel spin being very near is very small.”
first will be in the immediate vicinity of the first e* is diminished ~ The correlation hole was characterized as “arising from the
from the product of the single-particle (same spin) probabilities mutual repulsion terms, but they lie beyond the scope of Fock’s
at the two points. This diminution of probability is taken to be €equations.” For single determinant wave functions, the Fermi
a measure of the delocalization of the first electron at the hole is the result of the antisymmetry of a wave function with
position of the second electron, and hence a measure of therespect to electron interchange while the correlation hole
“Fermi hole”. vanishes for antiparallel spins. The latter is therefore determined

This “Fermi hole” has been interpreted by Badas providing by correlations beyond those embodied in HartrEeck wave
“a description of how the density of an electron of given spin, functions and therefore beyond those resulting from the Pauli
called the reference electron, is spread out from any given pointprinciple. The shape of the Fermi hole in a uniform electron
into the space of another same spin electron, thereby excludingfluid was given in an earlier paper of Wigner and Sé#tit is
the presence of an identical amount of same-spin electfon.” to be noted, however, that in connection with the terms “Fermi
In turn Badef has used this interpretation of the behavior of hole” and “correlation hole” Wigner and Seitz restricted their
the two-particle distribution function as the basis for the remarks to the behavior of the two-particle distribution function
definitions of a localization index(A) and a delocalization in “an otherwise uniform electron fluid”, with no reference to
indexd(A,B) where A and B refer to two volumes. The former a delocalization of an electron. Slater, in his revigim 1934
is called a measure of the total Fermi correlation within a volume and in a later papéfin 1951, Masle# in his 1958 paper on
the shapes of Fermi holes in atoms, and McWeeny in his
T E-mail: fulton@chem.fsu.edu. reviewt® in 1960, also restricted their remarks to the behavior
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There is a common conception that in a many-electron system
the two-particle distribution function can be used to determine
the extent of delocalization of a single electfod! The
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of the two-patrticle distribution function and/or to the exchange when 101) equals £202). The converse, that the vanishing of
hole associated with the distribution function, again with no the two-particle distribution function when;(1) equals (,05)
reference to the delocalization of an electron. Ruederbarg implies the Pauli principle, need not hold. The connection to
1962 seems to have been the first to have made a subtle changehe single-particle density still holds, but there is no other
in the interpretation of the Fermi hole from what McWeeny information about the behavior of a single particle inherent in
called a “correlation factor”, related to the two-particle distribu- the two-particle distribution function. In particular, the two-
tion function in a classical manner, to the sharing (or delocal- particle distribution function in general does not contain
ization) of a single electron between points, calling the negative information about the delocalization of an electron, nor does it
of the correlation factor the “sharing fraction”. necessarily reflect the spreading of the electron density of a
The analysis considered above initially raises two concerns. single reference electron at a point into neighboring regions of
The first is the role of the Pauli principle in determining the space as has been suggested by othétsTo obtain further
extent of delocalization of the reference electron, the second isinformation about the behavior of a single electron requires
the role of Fhe two-part_icle distrib_ution function in determining knowledge of some property governing the wave function, e.g.,
single-particle properties. Consider the following two ques- tnat the wave function be expressible as a single determinant.

tions: “What is the role of the Fermi hole in determining the . .
S ! ¥ . h Now the average value of any single-particle property can
delocalization of an electron?”, and “What single particle . . : / ;
be found from the single-particle density matrix, with the

properties can be deduced solely from the knowledge of the implication that all single-particle properties can be found from

two-particle distribution function?” the single-particle density matrix. In particular, the delocalization
At the outset let the two-particle distribution function € single-particie density matrix. in particuiar, tne delocalizatio
(or spread) of a single particle should be obtainable from the

(normalized to 2) for the two electrons inztbe given by single-particle density matrixno knowledge of the two-particle
@)(r101,r202) and the corresponding single-particle density be > 9~ o
polroura0s) b g sihg'e-p y distribution should be necessary for the determination of the

given by p®(ro) where (o) stands for the space coordinates o

and a discrete inde® which, in the case of an electron, is a extent of delocalization of an electron.

spin index. The implementation of this observation leads to a different
Consider the hydrogen molecule in its ground electronic state measure of the delocalization of an electron in a many-electron

and constrained to be at the center of an evacuated containersystem, a measure given solely by single-particle quantities.

which is large compared to the size of.HElectrons with the ~ These are the sharing amplitud&;{’'[] which is intimately

same spin as one of the pair of electrons in the molecule areconnected to the single-particle density matrix, and the sharing

constrained to be in the walls of the container because theindex 1(g;¢') = |@;¢'0R.21 ¢ and ¢’ stand for the spatial plus

specification of a singlet state demands that within the molecule spin coordinatesr¢) and ¢'o"). By integrating the arguments

the same spin distribution function vanisi?(r,o,r,c) = 0. ¢ and@ of 1(¢;¢'") over the volumed/, and Vg, respectively,

Let the reference electron with coordinates givenidyt) be we obtain indices which in some cases have numerical values

denoted by e*. According to the prescription given above, the similar to A(A) and 6(A,B). We denote the indices so found

Fermi hole due to e* is described by from the sharing indices dga andBag = 2Ixs. When the many-

particle wave function is a single determinant wave function,

the numerical values df(A) and 6(A,B) are identical to those

of 1aa and Bag. Wang and Werstiuk attempted to derilg

the diminution ofp®@)(ro*,r*¢*) from the product of the one-  andBag from the expressions fdi(A) andd(A,B) when electron

particle density being complete. As a result, the Fermi hole for correlation is included22 However, comparison of(A) and

e* extends over the region of the interior of the container where §(A,B) with 1aa and Bag showed systematic differences, the

pd(ro*) is nonvanishing. Now the reason for the vanishing of differences tending to increase as the covalency increases.

p(ro*,r*o*) is not the Pauli principle; rather it follows from  Although the differences for the states of the molecules

the fact that there are but two electrons in the singlet state andconsidered by Wang and Werstiuk do tend to be small, the

from the location of the molecule relative to the container walls. differences are nonzero. These differences persist in the

This is but one, perhaps extreme, example that there are reasongompilations given in a recent review of electron delocalization

p(z)(ro*, [* O*) _ p(l)(l’ 0*) p(l)(r* O*) — _p(l)(r 0*) p(l)(r* 0*)

other than the Pauli principle that influence the behavior of the
two-particle distribution function.

Second, suppose that we are given only the two-particle
distribution function for a system dfl particles

2
P§\| )(r 1011 20)

The normalization of this distribution function, when integrated
and summed over all coordinates, iSN(N — 1). The integral
over the coordinates {o,) gives

(N = 1)p(r y07)

wherep{(r101) is the single-particle density af with spino;

in the N electron system. In the absence of any further
information, this is the only single-particle property inherent in
the two-particle distribution function. If we are now told that

the particles are fermions, we know, as a result of the Pauli
principle, that the two-particle distribution function vanishes

in aromatic moleculest Wang and Werstiuk indicate that “The
differences between our results and the F-A-B reduitay
derive from a difference in the qualities of the densities used in
the two studies.” This raises the question as to why such
differences exist. If the differences in the values of the indices
are not due to the difference in the qualities of the densities,
the differences must be intrinsic to the indices themselves. It is
our contention that this latter is the cagbe connection between
the two-particle distribution function and the delocalization of
a single electron holds neither for general wave functions nor
for general density matrixes. The agreement of the values of
the two-patrticle indice$(A) and 6(A,B) with the single-particle
sharing indiceslaa and Bag holds fortuitously for single
determinant wave functions. In this paper we show that, in
general, the two sets of indices are intrinsically different. They
in fact measure different aspects of the behavior of electrons in
a many-electron system.

One premise in the following is that any measure of the
delocalization of an electron (or, in general, any particle



Comparison of the Localization of an Electron J. Phys. Chem. A, Vol. 110, No. 44, 20062193

including bosons) should be valid for any wave function and  In an attempt to quantify the extent of delocalization of the
by inference for any state of the electrons, be it the ground first electron, Bader proceeds as follo#sThe two-particle
electronic state, some excited electronic state, some state whicldistribution function is used to define the function
is not an energy eigenstate, a general mixed (impure) state, orFf\f)(rlol,rzog) by
in the classical limit.

In the next section we give brief reviews of the two-particle  Fu (11011 ,0,) = pP\(r 101,105 — p(r10) p(r,0,)  (4)
distribution function and of the sharing quantities as used in
attempts to determine the delocalization of an electron. This is F¢(r101,r202) is a measure of the deviation of the two-particle
followed by a section in which the delocalization measures distribution function from the product{(rio1) p{(r202) of
obtained from the two-particle distribution function are com- the electron densities at the two poifitS.he sum rules obeyed
pared to the corresponding sharing indices for some simple by F(r,04,r 05) are
fermionic and bosonic wave functions describing the ground
and _excited states of (pseudo)z.Hrht_a penultimate seption fdrz zpﬁ)(rlgl,rzgz) = —P(Nl)(rlol)
applies these measures to two classical systems, an ideal gas =
mixture and a single component compressible liquid. In both
cases we find that the measures based on the two-particle f dr, f erZFﬁ)(rlal,rzaz) = —Ny(o)) (5)
distribution function indicate that there is long ranged delocal- 02
ization of the classical particles for which there is no Fermi ) o )
hole. In contrast, the sharing quantities give complete localiza- @9ain being independent of the nature of the particles. We also
tion of the particles in the classical limit. The final section 9define the quantity

summarizes our results.
2 2
F§\1 )(rlvrz) = z F§\1 )(rlolerGZ) (6)

01,02

Il. General Considerations

which has no dependence on the spin indices. It is this spatial

Consider a system dfl particles. Let the position and spin @ . . o
(or other degree of freedom which for convenience we call spin) Py that is used by Bader to characterize the localization and

. i . delocalization of an electron.
variables of particlé be denoted by; ando;. The two-particle . - T
distribution function [normalized tdl(N — 1) when integrated The integrated quantities, the localization ind&) and the

over the spatial variables and summed over the spin variables]delocalization indexa(A,B), are defined by integrating the
P P point—point quantities over the volumé& andVg ascribed to

is here denoted by{(r101,r202).23 The particle density at the  Sioms A and B
point (r101), denoted bye{(ri01) and normalized toN, is

related to the two-particle distribution function by MA) = |fAdr1 fAer Fﬁ)(flyrz)l
(N = 1)p{(r,0,) = zjdrz AT 1017 20,) (1) 0(AB) = 2|fAdr1 der? RV or) 7
’ In contrast to F(Nz)(rl,rz), the sharing amplitudég;Z'Ois
The average number density irrespective of spin is found solely from single-particle properties and represents the

generalization of a simple construct for pure, single-particle
1 _ 1 state?! Let the single-particle wave function be
) =S o)
¥()

and average numbeiy(o;) of electrons having spin; is As is well-known, the wave function multiplied by a constant
phase actor does not change the state of the particle. An invariant

_ _ @) construct which measures the difference in phase of the wave
(N = DNy(oy) = (Zfdrl ferpN (rouroo9)  (2) function at the two point§ andZ’ is given by
2

* T

A subsequent sum over givesN(N — 1). It should be noted ¢(6) ¢(E)
that these sum rules have nothing to do with the nature of the The absolute value squared of this quantity is the measure of
particles; they hold whether the particles be fermions, bosons, the sharing (delocalization) of the wave between the two points.
or classical particles. As a consequence, the sum rules havelhe integral ofl’ over all space gives the particle density at
nothing to do with the existence or nonexistence of a Fermi the other point:
hole.

It is well-known that, as a result of the antisymmetry of a de' 19() 9*(&) 1 = |p(O)?
wave function describing fermions, the two-particle distribution
function vanishes when the particles are electrons and the two
sets of coordinates are equalid;) = (r202):

The sharing amplitud&Z;¢'0l
Z;6'0= py (&8 (8)

pﬁ)(rlo-l'rlo-l) =0 ®3) [dropping the superscript opn(E;E")] is the generalization of
@(§)@*(¢') to impure states, and the sharing index
The probability of finding two electrons with the same spin at
the same spatial point vanishes. 1(§;C) = Irgtadiis 9)
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is the generalization of@(&) ¢*(&')|2 As a result of its Values of the mixing anglé giving unique wave functions up
construction, the sharing index satisfies the sum rule to an overall phase factor may be restricted to lie in the interval
—m/2 < 6 < 7/2. For the Bose system the wave functions are

JdE (G = p(&:0) W o(rury) = [@dr) dr,) cosd — @ (ry) @ur,) sin6] (13)

The amplitudeld;¢'Ocan be written in terms of the eigen- and
functions and eigenvalueg (), and eigenvalues;y,, of the

density matrix (the natural spirorbitals) as* W (ryr,) = %2[%01) @) + ofr) olr)]  (14)

(These latter are just the spatial parts of the Fermi wave
functions.)

Although simple, these sets of wave functions have the
flexibility of being able to mimic the behaviors of a variety of
states of fermionic and bosonic Hranging from single
determinant ground and doubly excited state wave functions to
wave functions which include the effects of correlation of the

I(r;r)= Zl(ro;r'o') electrons as well as including a wave function which describes
5, singly excited states.
For both the Fermi and Bose wave functions having the
The integrated quantitie$sa andBag, are parametric dependence 6rihe spinless poirtpoint quantities
are

LE0E S @@V #nl@)

The sharing index, which depends solely upon the spatial
coordinates, is formed from the sum KE;¢") over the spin
indices:

Iap = Ldr ﬁdr' I(rir") P11 ,) = 2{ @ ry) @dr,) cosO — @ (r)) @ r,) sin6}>
Bas =2l =2f,0r [idr' I(r;r’) (10)  F9(r,r,) =

low th hich ly the ind ~2{gdr) 9(r) cosO + @,ry) qry) sin 6} +
Below there are two systems to which we apply the indices: 2 , ) ; .
the first is a particular set of electronic (and bosonic, replacing Apdr)” — @r)ledr)” — @uro)] cos O sint 6

the electrons by bosons) states of Hhe second is a classical -1y = 21 ) (r ricosh! + o(r risinOl2 (15
fluid. It may be objected that because there are only two (i) = 2{n) @)l | @) @) @)

electrons, His too special a case to which the definition should e gpinless pointpoint quantities for the singly excited wave
be applied. However, +has the prototypical covalentbond and  fnctions are, for both the Fermi and Bose functions,
any measure of delocalization should be applicable to the

molecule. We could equally well considerlin which regions (2) — 2
containing the core electrons are ignored, the valence regions P2 ={9dry) @l + ¢dlfs) ¢}
mimicking the electronic structure of;Ht may also be objected FOr,r,)=—{ dry) odry) — 1) er)}?

that a classical fluid does not behave as a collection of fermions.

However, at high temperatures and low particle densities a Fermi I(r;r") = {odr) qr") + @4r) %(r')}2 (16)

(and a Bose) gas behaves as a perfect gas.
That both the Fermi and Bose wave functions lead to precisely
the same expressions for the spatial two-particle distribution
Ill. Application to H » function and to the pointpoint Bader index is a strong
indication that the Fermi hole in general has nothing to do with
the delocalization of a particle.

here the elect . d ibed b imol t of sinalet There are some characteristic features of these expressions
where the electrons inkére described by a simple set of singlet i, should be noted. Consider the expressions given in eqs

wave functions; the second is a Bose system, where the electronsls_ First, as is well-known, when the wave function is given
in H, are replaced by spin 0 particles also described by a simpleby a sinéle determinant arr’d is identified withr andr, with

set of wave functions. Lebs(r) andg4(r) be two single-particle ', the point-point Bader inde>F(2)(r r») and the point point
real orbitals, the former being a bondingyY orbital and the sﬁaring indexi(r;r') are identicallvl Tlﬁi; oceurs fd# = 0 and
latter an antibondinge()) orbital. For the Fermi systeththe for 6 = /2. Seéond, when co%sin 6 is less than 0 the two-

wave functions are particle distribution function@(r1,r2) and the sharing index
. I(r;r"), again with the identifications af, = r andr, =r’, are
Wrpg(81,62) = [@rd) @rp) oSO — ¢(ry) @q(ry) sin 0] x equal. Third, when co8 sin 6 is greater than 0 the difference
[o(oy) B(oy) — B(oy) a(oz)]/«/i (11) between the Bader indeE(Nz)(rl,rz) and the sharing index
I(r;r") resides solely in the term

Here we consider two systems: the first is a Fermi system,

the spin functions being denoted o) and (o), and the .
singly excited wave function Alodr)” = ¢dr) @)’ — ¢ r)’] cos' O sir’ 0

1 the difference between the indices being a maximum when

W(61,6,) = E[(ps(rl) @ur,) + = n/4. When the volumevolume indices are found by
integrating over the atomic basins, the difference due to this
@1y @dr)llafoy) Bloy) — Bloy) aoy)] (12) term vanishes. This vanishing may in part account for the rough
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agreement between the basimasin sharing indices and the Bader's two particle delocalization indices
values of the delocalization indices which was found by Wang 07—
and Werstiul Lastly, we note that the expressions given in i

egs 16 for the singly excited states all differ. In particular note L e N

the difference in the relative signs of the products of orbitals r / \

@sps and ga@a in the expressions deﬁ)(rl,rz) andl(r;r').
The sharing amplitudes are given by

@8 Ep g = 0, A @s(r)1C0osO) @ (r') + @4r)ISin@) @ ')}

B Bo = =0,,A040) 00D + 90 00} (A7)
for the Fermi system and
i1 ey = V2 91 cosO) gr) + ¢1)Isin@) g1} L
@;r'Tde = {@r) @) + @ur) @)} (18) 0

Figure 1. Integrated Bader two-particle delocalization indices as
for the Bose system, the amplitudes for the Bose system beingfunctions of the mixing anglé in radians.
essentially the spatial part of the amplitudes for the Fermi . o )
system. The quantities obtainable from the two-particle distribu- 10 illustrate quantitatively the differences between the two-
tion function have no counterparts to these single-particle particle distribution function, the Bader indices, and the sharing
amplitudes. indices, we choose particularly simple orbitals: ¢gi(r) and

The spin independent course grained quantities, i.e., the¢s(r) be hydrogen-like 1s orbitals of the form

various volume-volume indices including the two-particle
distribution function, are found by integrating the peipbint dap(r) = (03/7) M2 eI ~Tasl
guantities over the volumes constituting the atoms according
to Bader's criterior?’ Label the atoms by A and B. The volumes  centered on the protons A and B, respectively. The expanent
associated with the atoms are simple: the atomic volumes arejs chosen to be 1.18, a compronfisemong a molecular orbital
separated by a plane which is perpendicular to and bisects thetype wave function, the Heitler.ondon—Wang wave function

line connecting the two nuclei. For the wave functions depending gnd the Weinbaum wave function. The distance between the
on 6 the indices are, for both the Fermi and the Bose systems nclei is chosen to bR = 1.403 u. The forms of the molecular

(the integrated values of the poifpoint distribution function orbitals are
are denoted byPaa andPag)?®

1
AA) = %[1 + 8(gu@)al? cOSO SN 6] dr) = —m[m(r) + ¢g(n)]
O(AB) =1 - 8|(¢s@aal’ cOSO SN G o) = 1_ [6a() — o1

v2(1-9

1 2 .
Ian = 5[1 + 8|(pg cos@ sin6 ) . . .
AA 2[ (@ @a)al ! The choices of the exponent and the internuclear distance give

Bag = 1 — 8/(¢5®.)al?|cOSH Sin 6] S=0.682
Paa = % — 4(@s@Ial® cOSO sin 6 and

_ ), = 0.4448
Pre = % + 4|(¢g@2)al” cOSO sin 6 (19) 750

. . . . . The Weinbaum wave functidhis characterized by = 0.111,
For the singly excited wave functions we obtain, again for both and the valence bond wave function is characterized by

the Fermi and Bose systems, 0.187.
1 We first compare the integrated quantities, the Bader indices
A(A) =5 2(@sP)al? and the corresponding basin-basin sharing indices, and then
consider the basinbasin two-particle distribution functions. In
0(AB) =1+ 4|(¢S,%)A|2 Figures 1-3 the solid lines represent the self-basin indices

A(A), Iaa, and the self-two-particle distribution indeRya, and
the dashed lines represent the inter-basin indid¢@sB), Bag,
and the inter-basin distribution indeRRag. As noted above, the
Bader indices and the sharing indices coincide for value® of

1
lan = 2 + 2|((ps1(pa)A|2

_ 2

Bag =1~ 4(@s@aal ranging from 0 tat/2: A(A) = Iaa andd(A,B) = Bag. However,
for values off between—s/2 and 0, the indices behave quite

1 2

Pai = > + 2[(ps@)al differently: the localization index(A) of Bader drops below

0.5 by as much as the self-sharing indgx rises above 0.5
P = 1 2/( ) |2 (20) and the delocalization indeXA,B) rises above 1.0 by as much
AB 2 PsPala as the bond indeBags drops below 1.0. That the integrated
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Sharing indices
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Figure 2. Integrated sharing indices as functions of the mixing angle
6 in radians.

Two particle distribution functions
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Figure 3. Integrated two-particle distribution functions as functions
of the mixing angled in radians.

sharing indices do not discriminate between positive and
negative values of the mixing angheshould not be a surprise
because the single-particle density matrix

PG:E) = 0, A 9dr) COS(6) @) + @4(r) SIN(6) (1)}

Fulton

When 6 = 0 or 6§ = /2, the functions are simple, being the
products of either the bonding or the antibonding molecular
orbitals

Wo(rr) = @4y L)
W o(rry) = =@ ry) @4r»)

As a result, there is no correlation between the positions of the
two electrons. Particle 2 is independent of particle 1. If we fix
particle 2 at some position, e.g3, where the single-particle
orbital does not vanish, the behavior of the other particle is
described by the orbitaps(r1) when the total wave function is
Wo(ry,r2) and by the orbitadp,(r1) when the total wave function

is W.o(r1,ro), irrespective of the value of,. Because each of
the orbitals extends over the entire molecule, particle 1 is
delocalized over the entire molecule.

For wave functions which are not single determinants it is
simplest to consider the case in which the atomic orbitals
¢a(r) andes(r) have no overlapS= 0. The various integrated
guantities behave similarly to those given in Figures31the
difference being that the extreme values of the indiced &)
are 0 and 1; for(A,B), 0 and 2; forlaa, 0.5 and 1; and for
Iag, 0 and 1. The locations of these extremes occur at the same
values off) as when the overlap is nonzero. Consider first the
case of) = n/4. The spatial part of the Fermi wave function is
simply the valence bond wave function when there is zero
overlap

1

V2

We begin with a discussion of the two-particle distribution
function. When particle 1 is in the vicinity of nucleus A, patrticle

2 must be in the vicinity of nucleus B for the wave function to
be nonvanishing and vice versa. This is the behavior indicated
by the values of the integrated two-particle distribution function,
Paa = 0 andPag = 1, in the case of zero overlap, and reflected
by the values given in the Figure 3 fér= /4 when the overlap

is nonvanishing. The values of the sharing indices can also be
understood on the basis of the wave function. To get the
behavior of a single particle, e.g., particle 1, we first choose
particle 2 to be in the vicinity of nucleus B. Then that part of
the wave function referring to particle 1 which is nonvanishing
is ¢a(ri), and particle 1 is localized in the vicinity of nucleus
A. If particle 2 is in the vicinity of nucleus A, the situation is
reversed and that part of the wave function referring to particle

W a(r 3,1 o) = ——[Palry) ¢p(ry) + ¢g(ry) dalr,)]

does not disciminate between the positive and negative values.1 is ¢s(r1), localizing particle 1 in the vicinity of basin B. In
Therefore no single-particle property can discriminate between either case, particle 1 is localized in the vicinity of a single

these values.

The two-particle distribution indiceBaa andPag, given in
Figure 3, indicate that the correlation introduced into the wave
function for positive values of tends to keep the two electrons
apart, the inter-basin indeRRag increasing above 0.5 and the
self-indexPaa decreasing below 0.5. Whehis negative, the

correlation is reversed: the two electrons are more likely to be

in the same basin than in different basins.

basin resulting in the value of 1 for the self-sharing indigx
whenS= 0 andé = x/4. Correspondingly the interbasin index
is a minimum,Bag = 0. These extreme values are reflected in
Figure 2 when the overlap is nonvanishing. What do the Bader
indices give? These follow immediately from the definitions in
terms of the two-particle distribution function and the one-
particle densityA(A) = 1, andd(A,B) = 0. The values of the
integrated Bader indices agree with those given by the integrated
sharing indices.

Can the contrasting behaviors of the Bader indices and the  The pehavior of the Bader indices and the sharing indices

Rather than considering the Bader indices, it is simpler at the consider the case @f = —x/4 when there is zero overlap of

function. Consider the spatial part only of the Fermi function

IPO(rl’rZ) = [q)s(rl) q)s(rz) cos6 — qoa(rl) (Pa(rz) sin 6]

1

II"71114(r 1'r2) = \/E

[Pa(ry) Palry) + dp(ry) ¢yl
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TABLE 1: Values of Various Indices for the Singly Excited the singly excited state. The two-particle distribution function
Wavefunction has no counterpart to the sharing amplitude and does not
index value distinguish between bonding and antibonding types of delocal-
Pan 0.896 ization.
Pas 0.104 As in the former case, it is simplest to dissect the behavior
A(A) 0.104 of the wave function in the special case of zero overlap. The
0(A.B) 1.791 spatial part of the wave function is then
lan 0.896
Bas 0.209 1
W(ryry) = —=oary) dalry) — da(ry) ép(rl

The behavior of the two-particle distribution function can be V2
simply read off; if particle 2 is in the vicinity of nucleus A,
then so is particle 1. The integrated two-particle distribution when written in terms of the atomic orbitals. What differs from
functions reflect this: the values of the indices &g = 1 the wave function?’_ 4 is the relative sign between the two
andPag = 0. The behavior of the single-particle sharing indices terms; the present wave function has a node between the simple
is also readily apparent. Fix particle 2 to be in the vicinity of pair wave functionsga(ri) ¢a(r2) centered on nucleus A and
nucleus A. Then particle 1 is described by the orbiia{r1), ¢s(ri) ¢s(r2) centered on nucleus B. Because the atomic orbitals
which is also localized in the vicinity of nucleus A. If, rather, have zero overlap, the analysis of the behavior of the particles
particle 2 is fixed in the vicinity of nucleus B, then particle 1 is precisely the same as that given for the previous wave
is described bypg(r1), which is localized in the vicinity of function, with the values of the various integrated indices being
nucleus B. In either case, particle 1 is localized in the region of the same. Again, the Bader indices do not reflect the localization
a single basin, giving rise to the values of the single-particle of the pair of electrons.
sharing quantitiedaa = Igg = 1 andBag = 0. Aside from the Recall that the Bader indices involve the difference between
overall sign, the Bader indices require the subtraction of 1 from the product of the number of particles in the basins and the
the two-particle distribution functions, followed by multiplica-  integrated two-particle distribution function. This can obscure
tion by 2 for the interbasin index. This gives the valueg @) the meaning of the Bader indices. In this case, it is because the
= |[F(A,A)| = 0 ando(A,B) = 2|F(A,B)| = 2 when there is  number of particles in each basin is 1 and the integrated inter-
zero overlap of the atomic orbitals. According to the interpreta- basin distribution function is small that the difference is sizable,
tion of the Bader indice%? |F(A,A)| = O indicates that no  leading to the large value 6{A,B). The origin is in the behavior
particles are localized in basin A anBl(A,B)| = 1 indicates  of the two-particle distribution function itself and | think that
that a single particle, referenced to atom A, is delocalized onto the simplest interpretation is a direct interpretation of the two-
atom B, and a single particle, referenced to atom B, is particle distribution function; namely, the particles are mainly
delocalized onto atom A. This, however, is not what is given paired in either one or the other basin.
by the two-particle distribution function or indicated by the wave Next we compare some of the poifoint Bader indices and
function, both of which quite Clearly indicate that the two- point—point Sharing indices for both positi\&aand nega’[ivé).
particles behave as a “bound” pair. At the two electron level, Although for positivet) the integrated Bader indices and sharing
the particles, as a pair, are shared between basins A and B. Thendices have the same values, the peipvint Bader indices
interpretation which has been given to the Bader indices doesgnd the pointpoint sharing indices differ. Whefis negative,
not reflect this. it is clear from the integrated indices that the peipbint indices
The values of the integrated indices for the singly excited must differ. The spatial parts of the poirpoint indices (and
wave functions whers = 0.682 are given in Table 1. These amplitudes) depend on six variables. We reduce the number of
values are, in fact, the same as those obtained from the wavequantities being varied in the figures by fixing the internuclear
function W_(r1,r2). It should be noted that the value of axis to be along thex axis, by fixing the midpoint of the
O(A,B) in the table does not agree with the result given by molecule at the origin of the coordinate system, and by placing
Fradera and Soldan ref 63° The integrated two-particle  one point (', the fixed point) on the proton located at negative
distribution functions reflect the localized pairing of the two- x. The other point is allowed to roam about tkgplane. The
particles in either one or the other of the two basins. If one vertical axis is the value of the quantity being plotted. It should
particle is in basin A, for example, there is a high probability be noted that the figures give but a small subset of the point
that the other particle is also in basin A and there is a small point quantities and quantitative values of the integrated indices
probability that the other particle is in basin B. The sharing cannot be inferred from the figures. Recall that for the chosen
indices reflect a similar behavior. A single particle is localized set of wave functions, the values of the indices which depend
in either one basin or the other, with a small amount of inter- only on the spatial coordinates are identical for the Fermi
basin sharing. Again, the integrated Bader indices do not reflect particles and Bose particles.
this. Instead, the interpretation suggested for the Bader indices The Bader indices and the sharing indices have the same
is almost complete delocalization of the electrons between theyalues for single determinant wave functions when the identi-
basins. ficationsr = ry andr’ = r, are made. Figures 4 and 5 give the
A naive determination of the bond order for this wave point—point indices for the two single determinant wave
function that contains one bonding and one antibonding orbital functions in the set of wave functions, Figure 4 tb= 0 and
is 0, a value much closer to the value of the interbasin sharing Figure 5 for6 = 7/2. The first is representative of a Hartree
indexBag than to the value of the Bader indéfA,B), although Fock ground state, and the second represents a “Hatfeek”
perhaps not pertinent to the establishment of the validity of the doubly excited state when describing electrons. Both sets of
indices. But the pointpoint single-particle sharing amplitude, indices are symmetric with respect to inversion through the
given in Figure 17 below, indicates, in addition, that this is an origin, and indeed reflect the behavior of the squares of the
antibonding type of sharing rather than a bonding type of molecular orbitalsgs(r) and ¢4(r), respectively. A major
sharing, again more in line with what should be expected for difference between the two figures is that the peipbint
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Figure 4. Point—point sharing and Bader indice8,= 0°. Figure 7. Point-point sharing index§ = 6.36°.
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Figure 9. Two-particle distribution functiond = 6.36°.

Figure 6. Sharing amplitudeg = 90°. point Bader index are given in Figures 7 and 8 for this wave

indices in Figure 5 dip to naught on the line having= 0 in function3! Superficially, the indices are similar. Unlike the
contrast to the nonzero value in Figure 4. This is a reflection of indices represented in Figure 4 in which the peaks at the two
a possible nodal surface of the molecular orbitglr) cutting protons are of equal height, in this case the peaks located at the

the xy plane. But this node can only be inferred from the fixeéd point are higher than the peaks at the other proton. As
quantities derived from the two-particle distribution function. indicated in Figure 7, correlation has the effect of localizing an
The sharing amplitude for the wave function havihg 7/2, electron to the vicinity of the fixed point on the proton. A similar
given in Figure 6, shows the node unambiguously, there being ffect occurs for the Bader index in Figure 8; however here, as
a change in the sign of the amplitude as the node is crossed. Inshown by the plot of the two-particle distribution function in
the present case the amplitude clearly has the hallmarks offigure 9, the effect is due to two factors: (1) the increase in
antibonding rather than bonding. This is one illustration of an the probability of finding the second particle about the second
aspect of the sharing quantities that is not conveyed by the two-Proton if the first is in the vicinity of the first proton and (2)
particle indices: in general, the sharing amplitudes have nodalthe definition of F{)(r1,r;) as the difference between the two-
surfaces. It might be noted that the node is not at all picked up particle distribution function and the product of the single-
by the integrated quantities, the values of the interbasin indicesparticle densities at the two points.
being 1 for both the ground Hartre€ock state and the excited Closer inspection of Figures 7 and 8 indicates that the peak
Hartree-Fock state. These results indicate that the peftint at the fixed point (the proton located at negatijes higher
indices have the advantage over the integrated quantities offor the sharing index than for the Bader index. The peak at the
discriminating between the behaviors of the electrons in the second proton is also higher and sharper for the sharing index
ground electronic state and in the doubly excited state. The than for the Bader index. This difference is indicated more
sharing amplitude, however, provides the greatest discriminationclearly by Figure 10 in which the difference between the indices,
between the behavior of the electrons in the two states. [_F(Nz)(rlyrZ)] — I(r;r'") with the identificationg; = r andr, =

As noted above, the Weinbaum wave function, a simple wave r', is plotted. In contrast to the two sets of integrated quantities
function including effects due to correlation, is specified by the that have the same values wh@is positive, the pointpoint
valued = 0.111. The pointpoint sharing index and the point indices differ.
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Figure 10. Difference between the poinpoint Bader index and
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Figure 11. Point—point sharing index§ = —83.64.
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Figure 15. Point-point sharing index, singly excited state.

Figure 12. Point-point Bader delocalization indeg, = —83.64.
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The point-point indices for the wave function that is
orthogonal to the Weinbaum function are given in Figure 11
for the sharing index and in Figure 12 for the Bader index. We
note that the sharing index is more localized in the region
surrounding the fixed point and the Bader index is more
localized about the other proton, both consistent with the
differing values of the integrated sharing indices and Bader
indices,laa = 0.587 andBag = 0.826 in contrast td.(A) =

0.413 and(A,B) = 1.174. In addition, the small value (perhaps ] ] T ) )
zero) of the indices on a line running roughly parallel to yhe Figure 16. Point-point Bader delocalization index, singly excited state.

axis suggests that the sharing is of an antibonding type. Whennegative in the region of the other proton. The two indices show
the sharing amplitude is plotted (not shown), this is indeed the quite different behaviors for this mixing angle.
case. This behavior fits nicely with the wave function being an  The last comparison of the poinpoint indices is for the
excited state. singly excited wave functions. The integrated indices, given
As a further example of the difference between the point above in Table 1, show dramatic differences between the sharing
point quantities when the integrated indices are the same, wequantities and the Bader quantities. The sharing index, given
give the sharing index and the Bader index in Figures 13 and in Figure 15, and the Bader index, given in Figure 16, are also
14 when the anglé is 2C°. The point-point sharing index is quite different. The poirtpoint sharing index indicates that
always positive with essentially no sharing from the fixed point the electron is localized in the region of the fixed point with
to the vicinity of the other proton while the Bader index, rather minor sharing to the vicinity of the second proton whereas
although concentrated mainly about the fixed point with a the main contribution to the poirfpoint Bader index is from
maximum which is lower than that of the sharing index, is the region surrounding the second proton and a minor contribu-

~F{riry)/Botr®
5
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Let the volume associated with A Bé and that associated
with B be Vg. (Va and Vg need not sum to the total volume.)
The Bader indices are given by

e

TN

ll"".".‘:‘“‘\:\\\\\\\\\\\\
N

E oy,
S es AN 2
& W“\““i&}\\\“\‘\{}‘:ﬁo MA) =N Va _Na®
o0 N = AV N
~0.5 VB NANB
& O(AB) = 2Ny =2 (23)

whereNa g are the total numbers of particles in the volumes
Vag and N is the total number of particles in the system.
According to the proposed interpretation ofA), only the
fraction Na/N of the N particles in volumé/, are localized in
that volume. In turn, the value @df(A,B) indicates that there is

Figure 17. Sharing amplitude, singly excited state.

tion from the region of the fixed point. These differences in the

point—point indices are consistent with the differences in the a long-range delocalization of particles between even well-

integrated indices, the integrated sharing index indicating separated volumé, andVs. But to what extent is the reference

localization in one basin is larger than the delocalization to the particle in an ideal gas spread out by quantum effects? It is

other basin, the Bader indices indicating just the opposite.  expected to be of the order of the thermal de Broglie
The sharing amplitude for the singly excited wave function wavelengtf?

is given in Figure 17. As noted above in connection with the

integrated indices for this wave function, the sharing amplitude A= ( h? 1)1/2

indicates that the sharing is of an antibonding nature. The 2mmk

amplitude is positive in the region around the fixed point with

a nodal surface separating that region and the negative regionvheremis the mass of the particlé,is Boltzmann’s constant,

surrounding the other proton. Unlike the amplitude for the @ndhis Planck’s constant. At high temperature (e.g., in the

doubly excited state at the single determinant level given in classical limit) this wavelength is vanishing small, so that

Figure 6, the amplitude for the present wave function is not quaqtally the reference particle is not spread out byt is in fact

antisymmetric with respect to reflection through the plane !0calized. The measures proposed by Badwwever, indicate

containing the midpoint of and perpendicular to the line .Fe'Mi correlation” within the volume/x and delocalization

connecting the two protons. The magnitude of the amplitude is between the two volumeg, and Vs, which is interpreted as

larger at the fixed point than at the location of the other proton. Eg:gg'ndtli? tzlg Fgrrr|1| holekr).eli;t tze;icghnggblzeed;?;glg .FG;Lm'
This is a manifestation of the correlation inherent in the singly In tis classical gas use mere 1s mi inthis

. ) classical system! Furthermore, at high temperatures Fermi and
excited wavfunction.

. . o Bose gases have identical behaviors, both giving the same

The results presented in this section indicate that the Bader|gcgjization and delocalization indices, yet a Bose gas has no
indices and the sharing indices measure quite different aspect=armi hole.
of the behavior of particles in quantal systems. Even when the  These considerations can also be simply extended to any
integrated indices have the same values, the pgioint indices  yniform classical fluid. For simplicity, consider a uniform one-
generally differ. The exceptions to this are when the wave componentd = 1) fluid confined to the volum#. The regions
functions (for electrons) are given by single determinants. One associated with A and B are chosen far apart. In a closed system
important quantity given by the sharing quantities and not by of N particles contained in a volumé the asymptotic value of
quantities based on the two-particle distribution function is the the two-particle distribution function %
sharing amplitude, which allows for the discrimination between
bonding and antibonding behavior.

N2 KTkr
Pﬁ)(r 11r2)||r27r1\large_> ?(1 - T) (24)

IV. Classical Fluids
wherekr is the coefficient of isothermal compressibility
In addition to the differences shown above, the indices also

differ in the classical limit. Consider a mixture of classical ideal o= — l(ﬂ/) (25)
gases in thermal equilibrium at temperature The gas is = Wiop/tn
confined to a volumé&. The components of the gas are labeled
by the indexo. (0 may, but need not, be a spin index.) The As a consequence, the asymptotic limitref is
total number ofo particles is denoted bi,. The two-particle N2 KT
-

distribution function is Fﬁ)(rlvrz)hrz—rluarge_’ — FT (26)

N, N

oy o, 60102N‘72

pg\f)(rlal,rzg ,) = (21) and the index(A,B) between the two widely separated volumes

V2 containingNa andNg particles respectively is
@) s i KTk
F&(r 1011 202) is given by O(A,B) = 2NANB—VT (27)
N()' . . .
Fﬁ)(r101,r202) = _500_2 (22) a result that agrees with the calculation for an ideal gas and
172/ that does not vanish unless the fluid is incompressible. Again,
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this asymptotic result is for a purely classical system for which the delocalization of an electron (or more generally of a
there is no Fermi hole. particle)? (3) What single-particle properties can be determined
The sharing amplitude and the associated sharing index standsolely from the two-particle distribution function? (4) Are there

in sharp contrast to the Bader indices. These are readily intrinsic differences between the Bader indi¢é4&) andd(A,B)
calculated for a single particle in an ideal gas. In the following and the sharing indicelsa andBag? (5) What, if any, is the

we ignore any contribution due to the spin of the particles. The explanation for the rough agreement found between the values
normalized distribution function which plays the role of an of the indicesl(A) andd(A,B) andlaa andBag found by Wang
occupation number is and Werstiuk? (6) Do the Bader indice4(A) and 6(A,B) in
general give a measure of the delocalization of an electron? To
_ these we add the questions: what can and what cannot the
p(p) = q various indices determine?

The answers to these questions are predicated on the premise
that any measure of the delocalization of a particle should be
27mkT\3/2 valid for any wave function and by inference for any state of
=( > 1) the electrons, be it the ground electronic state, some excited
h electronic state, some state that is not an energy eigenstate, a

V is the volume of the gas, angd is the momentum. The general mixed (impure) state, or in the classical limit.

normalized natural orbitals are the eigenfunctions of momentum ~ The answer to the first question is clear. That there are
operator considerations beyond the Pauli principle that determine the two-

particle distribution function was early recognized by Wigner
and Seit2* Specifically, these authors mentioned the correlation
hole as “arising from the mutual repulsion terms, but they lie
beyond the scope of Fock’s equations.” Beyond this, however,
To get the sharing amplitude, we form the square rog(pf, there are other considerations, such as mentioned in the
multiply by yp(r) y;’;(r') and by the square root of the number Introduction; e.g., the location of a molecule relative to other
of particlesN in the gas, and then integrate over the momentum. molecules may be determined by the experimental setup.
This gives The answer to the second question is answered, in part, by
N2 , the c_onsiderations in_ section Iy in which th(_a Bad(_ar indices are
0:r' = (—) fdp Po(r)e Py considered for a mixture of ideal gases in a fixed volume
q behaving as a closed system and in part by the results of section
_ 12 8amKT\34 ke —ryzme [l in which the Bader indices and the sharing indices are
- T e considered for simple, yet flexible, sets of wave functions
describing fermionic and bosonic,HThat the spatial point
5 is the density of the gals/V. The corresponding poiripoint point indices are precisely the same for a set of fermionic wave
sharing index is functions and bosonic wave functions is a strong argument that
the Fermi hole in general does not determine the delocalization
I(rr') = B2 = p(&T[ka)S/Ze—kaT(r—r’)?/hz of a particle. Ir! addition, in sgction IV a Iopg-range coptribution
! ' 2 to the Bader index¢(A,B), is found for ideal gas mixtures.
Dilute gases composed of particles obeying either Febiriac
As the thermal de Broglie wavelength becomes small, the  or Bose-Einstein statistics behave ideally at high temperatures
sharing amplitude and the sharing index become more localizedand both have the same two-particle distribution function. In

—n2
e p%2mkT

g is the partition function

1 i
wp(r) — hT/ze”p/h

to the region for whichr( — r')2 < A%2mkT. In the limit of this classical limit for which the thermal de Broglie wavelength
zero de Broglie wavelength we fiftd A vanishes, there is no Fermi hole. A similar result holds for
. N , compressible fluids constrained as closed systems to a fixed
/I\lmol(r;r )=po(r —r) volume. Again there is a long-range contribution to the Bader

index, 0(A,B). We note that the sharing amplitude and the
and the particle is completely localized, quite unlike what is sharing index indicate complete localization of a particle in the
indicated by the Bader criteria. limit of vanishing A.

What we have found in this section is the delocalization The argument given in the Introduction gives the answer to
indices based on the two-particle distribution when applied to question 3. There it was shown that in the absence of any other
a system of classical particles have a behavior that is completelyrestriction, the only single-particle property that can be found
contrary to the behavior of the sharing indices. According to splely from the two-particle distribution function is the one-
the interpretations that have been giveni(d) and 6(A,B), particle density. Below we will note that there is a restriction
the former indices indicate that classical particles are not that does allow certain other properties to be determined from
completely localized to a region, rather they are delocalized over the two-particle distribution function.
macroscopic distances. The sharing index, on the other hand, 4t there are intrinsic differences between the Bader indices
shows complete localization in the classical limit. A(A) and 8(A,B) and the sharing indicelsa andBag is clear
from the contrast between the values of the indices for the same
wave function when the mixing anglé is negative. The

Several questions were raised in the Introduction. These underlying point-point indices have also been found to differ
included: (1) Is the behavior of the two-particle distribution for almost all values of the mixing angle. The two exceptions
function determined solely by the Pauli principle? (By “Pauli are for@ = 0° andf = 90°, in which cases the wave function
principle” we mean the general relation between spin and is a single determinant. Also found is a possible reason for the
statistics.) (2) What is the role of the Fermi hole in determining close agreement of the two sets of integrated indices found by

V. Discussion and Summary
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Wang and WerstiuR.If the mixing of the approximate excited however,on(E;E') is complex and it is not possible to carry out
Hartree-Fock states into the lowest energy Hartré®ck state such an extraction unambiguously. If it is known that the one-
to give a correlated ground-state wave function is of the form particle density matrix is real and if the nodal surfaces can be
given for H in the present paper for positive mixing angles, identified (so that the positive and negative regiongt;Z")
the term in the integrated indices that accounts for the differencescan be identified), all properties of the system can be found.
may be small because of cancellations occurring in the integrals.Under such circumstances the two-particle distribution function
The analysis of the integrated indices in section Ill, proceed- is capable of giving the same information as the sharing
ing directly from the underlying wave functions, indicate that amplitude, and in a sense the indices contain equivalent
the Bader indices do not give a measure of the delocalization information.
of an electron whereas the sharing quantities do give a measure When the wave function cannot be represented by a single
of the delocalization of an electron. For example, Table 1 gives determinant, the pointpoint sharing indices and the point
the values of the indices for the singly excited state af Fhe point Bader indices are nonequivalent. In such a case, what do
Bader delocalization index is found to b¥A,B) = 1.791 and what do not the indices determine? Because the single-
whereas the inter-basin sharing indeBjg = 0.209. The latter, particle density matrix no longer determines the higher order
although nonzero, is in line with what is expected for a bond density matrices, the single-particle sharing amplitude no longer
order arising from a single bonding orbital and a single determines the two-particle or any higher order distribution
antibonding orbital and with what is expected from the structure function. Only single-particle properties can be determined in
of the wave function, whereas the former is well out of line. general from the single-particle sharing amplitude. One of these
(Parenthetically, we note that the sharing amplitude with the properties is the extent of delocalization of a single particle.
fixed point located on one of the protons does have a node However, the single-particle quantities do not necessarily
between the fixed point and the other proton, this being discriminate between different wave functions. Examples of such
indicative of an antibonding rather than a bonding situation.) wave functions are given in this paper: the two wave functions
For this singly excited state, the integrated two-particle Wepg($1,82) and Wep —¢(C1,82) give rise to the same single-
distribution functions are more amenable to direct interpretation particle sharing amplitude, and thus to the same pgoint
than are the Bader indices, having the values of 0.896 and 0.104sharing index. On the other hand, the two-particle distribution
for the self-index and inter-basin index, respectively. The function determines solely the behavior of a pair of particles
interpretation is simply that if one particle is localized in the and, concomitantly, the single-particle density. In general, it does
region of a given proton, the other particle is more likely to be not determine the delocalization of a single particle. However,
in the region of that given proton. the two-particle distribution function, and therefore the peint
In addition, the values of the indices, both the integrated point Bader index, does discriminate between positive and
indices and the pointpoint indices, are the same for the Fermi negative values of the mixing angle for the wave functions given
and for the Bose wave functions considered in this paper. Thisin this paper. (We do note that the single-particle amplitudes
is a strong indication that the Fermi hole need have nothing to can be generalized to two-particle sharing amplitudes that not
do with the localization of a single particle. only distinguish between positive and negative values of the
It is clear that the Bader indices and the sharing indices in mixing angle but also distinguish between fermionic and bosonic
general describe different aspects of the behaviors of electronsbehavior.) Lastly, the sharing quantities have a feature that is
What can be obtained from the two sets of indices? Are there not inherent in quantities derived from the two-particle distribu-
ever some common features that can be obtained from thetion function, the sharing amplitude. This amplitude in general
indices? What are the intrinsic differences between the sets ofhas a rich nodal structure which, as illustrated in Figures 6 and
indices? 17, can be used to distinguish between different types of sharing,
We first consider the properties of wave functions that are e.g., between bonding and antibonding types of sharing.
given by a single determinant. For such a wave function, the
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